Oh-Hoon Kwon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1012186/publications.pdf

Version: 2024-02-01

93 papers 4,038 citations

34 h-index 62 g-index

99 all docs 99 docs citations 99 times ranked 4663 citing authors

#	Article	IF	CITATIONS
1	Endoplasmic Reticulum-Localized Iridium(III) Complexes as Efficient Photodynamic Therapy Agents via Protein Modifications. Journal of the American Chemical Society, 2016, 138, 10968-10977.	13.7	330
2	Imidazole-Based Excited-State Intramolecular Proton-Transfer Materials:Â Synthesis and Amplified Spontaneous Emission from a Large Single Crystal. Journal of the American Chemical Society, 2005, 127, 10070-10074.	13.7	318
3	4D Imaging of Transient Structures and Morphologies in Ultrafast Electron Microscopy. Science, 2008, 322, 1227-1231.	12.6	243
4	Dynamics of Chemical Bonding Mapped by Energy-Resolved 4D Electron Microscopy. Science, 2009, 325, 181-184.	12.6	170
5	Double proton transfer dynamics of model DNA base pairs in the condensed phase. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8703-8708.	7.1	160
6	Single-nanoparticle phase transitions visualized by four-dimensional electron microscopy. Nature Chemistry, 2013, 5, 395-402.	13.6	139
7	organogel from nonemission induced by supramolecular assembly and gelation: luminescent organogel from nonemissive oxadiazole-based benzene-1,3,5-tricarboxamide gelatorElectronic Supplementary Information (ESI) available: Synthetic and experimental details, X-ray diffractograms, H-bonded aggregate-state absorption and emission spectra, and original data for Fig. 1c and 2. See	4.1	135
8	Integrative Approach toward Uncovering the Origin of Photoluminescence in Dual Heteroatom-Doped Carbon Nanodots. Chemistry of Materials, 2016, 28, 6840-6847.	6.7	128
9	4D Electron Tomography. Science, 2010, 328, 1668-1673.	12.6	115
10	Carbon Dots: Bottomâ€Up Syntheses, Properties, and Lightâ€Harvesting Applications. Chemistry - an Asian Journal, 2018, 13, 586-598.	3.3	101
11	Excited-State Triple Proton Transfer of 7-Hydroxyquinoline along a Hydrogen-Bonded Alcohol Chain: Vibrationally Assisted Proton Tunneling. Angewandte Chemie - International Edition, 2006, 45, 415-419.	13.8	89
12	Atomic-Scale Imaging in Real and Energy Space Developed in Ultrafast Electron Microscopy. Nano Letters, 2007, 7, 2545-2551.	9.1	88
13	Imidazole-Based Excited-State Intramolecular Proton-Transfer (ESIPT) Materials:  Observation of Thermally Activated Delayed Fluorescence (TDF). Journal of Physical Chemistry A, 2007, 111, 9649-9653.	2.5	85
14	Asymmetric Double Proton Transfer of Excited 1:1 7-Azaindole/Alcohol Complexes with Anomalously Large and Temperature-Independent Kinetic Isotope Effects. Angewandte Chemie - International Edition, 2004, 43, 5792-5796.	13.8	83
15	Mechanistic insight into the sensing of nitroaromatic compounds by metal-organic frameworks. Communications Chemistry, 2019, 2, .	4.5	82
16	Nanoscale Mechanical Drumming Visualized by 4D Electron Microscopy. Nano Letters, 2008, 8, 3557-3562.	9.1	81
17	EELS femtosecond resolved in 4D ultrafast electron microscopy. Chemical Physics Letters, 2009, 468, 107-111.	2.6	66
18	4D ultrafast electron microscopy: Imaging of atomic motions, acoustic resonances, and moir \tilde{A} fringe dynamics. Ultramicroscopy, 2009, 110, 7-19.	1.9	65

#	Article	IF	Citations
19	Hydration dynamics at fluorinated protein surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17101-17106.	7.1	62
20	Charge Transfer Assisted by Collective Hydrogenâ€Bonding Dynamics. Angewandte Chemie - International Edition, 2009, 48, 6251-6256.	13.8	56
21	Excited-State Tautomerization Dynamics of 7-Hydroxyquinoline in \hat{l}^2 -Cyclodextrin. Journal of Physical Chemistry B, 2005, 109, 3938-3943.	2.6	53
22	Solvation in protein (un)folding of melittin tetramer–monomer transition. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12593-12598.	7.1	53
23	Efficient Exciton Diffusion in Organic Bilayer Heterojunctions with Nonfullerene Small Molecular Acceptors. ACS Energy Letters, 2020, 5, 1628-1635.	17.4	52
24	Excited-State Double Proton Transfer of 7-Azaindole in Water Nanopools. Journal of Physical Chemistry B, 2005, 109, 20479-20484.	2.6	50
25	Intermediate states of molecular self-assembly from liquid-cell electron microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1283-1292.	7.1	48
26	Biphasic Tautomerization Dynamics of Excited 7-Hydroxyquinoline in Reverse Micelles. Journal of Physical Chemistry B, 2006, 110, 11997-12004.	2.6	47
27	Direct Observation of Martensitic Phase-Transformation Dynamics in Iron by 4D Single-Pulse Electron Microscopy. Nano Letters, 2009, 9, 3954-3962.	9.1	46
28	Proton transport of water in acid–base reactions of 7-hydroxyquinoline. Chemical Communications, 2009, , 926.	4.1	44
29	Macromolecular structural dynamics visualized by pulsed dose control in 4D electron microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6026-6031.	7.1	44
30	Morphology Tunable Hybrid Carbon Nanosheets with Solvatochromism. Advanced Materials, 2017, 29, 1701075.	21.0	42
31	Crystallizationâ€Induced Emission Enhancement and Amplified Spontaneous Emission from a CF ₃ â€Containing Excitedâ€State Intramolecularâ€Protonâ€Transfer Molecule. Advanced Optical Materials, 2017, 5, 1700353.	7.3	41
32	Triple proton transfer of excited 7-hydroxyquinoline along a hydrogen-bonded water chain in ethers: secondary solvent effect on the reaction rate. Photochemical and Photobiological Sciences, 2009, 8, 1611.	2.9	38
33	Ultrafast electron microscopy integrated with a direct electron detection camera. Structural Dynamics, 2017, 4, 044023.	2.3	36
34	Proton Transfer of Excited 7-Azaindole in Reverse-Micellar Methanol Nanopools:Â Even Faster than in Bulk Methanol. Journal of Physical Chemistry B, 2005, 109, 8049-8052.	2.6	35
35	4D visualization of embryonic, structural crystallization by single-pulse microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8519-8524.	7.1	35
36	Tunable Photoluminescence across the Visible Spectrum and Photocatalytic Activity of Mixed-Valence Rhenium Oxide Nanoparticles. Journal of the American Chemical Society, 2017, 139, 15088-15093.	13.7	33

#	Article	IF	Citations
37	Migration of Protons during the Excited-State Tautomerization of Aqueous 3-Hydroxyquinoline. Journal of Physical Chemistry A, 2004, 108, 5932-5937.	2.5	32
38	Ultrafast Electron Microscopy Visualizes Acoustic Vibrations of Plasmonic Nanorods at the Interfaces. Matter, $2019,1,481\text{-}495.$	10.0	31
39	Ground-State Proton Transfer of 7-Hydroxyquinoline Confined in Biologically Relevant Water Nanopools. Journal of Physical Chemistry C, 2009, 113, 16110-16115.	3.1	30
40	Enhanced solid-state fluorescence in the oxadiazole-based excited-state intramolecular proton-transfer (ESIPT) material: Synthesis, optical property, and crystal structure. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 191, 51-58.	3.9	28
41	Chirped imaging pulses in four-dimensional electron microscopy: femtosecond pulsed hole burning. New Journal of Physics, 2012, 14, 053046.	2.9	27
42	Water-wire catalysis in photoinduced acid–base reactions. Physical Chemistry Chemical Physics, 2012, 14, 8974.	2.8	27
43	4D Imaging and Diffraction Dynamics of Single-Particle Phase Transition in Heterogeneous Ensembles. Nano Letters, 2014, 14, 946-954.	9.1	27
44	Time-resolved spectroscopy of the ensembled photoluminescence of nitrogen- and boron/nitrogen-doped carbon dots. Physical Chemistry Chemical Physics, 2018, 20, 11673-11681.	2.8	27
45	Excited-State Proton-Relay Dynamics of 7-Hydroxyquinoline Embedded in a Solid Matrix of Poly(2-hydroxyethyl methacrylate). ChemPhysChem, 2003, 4, 1079-1083.	2.1	26
46	Chemoselective Trifluoroethylation Reactions of Quinazolinones and Identification of Photostability. Journal of Organic Chemistry, 2019, 84, 6737-6751.	3.2	26
47	Formation Mechanism of Anthracene Dimers and Excimers in NaY Zeolitic Nanocavities. Journal of Physical Chemistry B, 2004, 108, 3970-3974.	2.6	25
48	Origin of ultraweak fluorescence of 8-hydroxyquinoline in water: photoinduced ultrafast proton transfer. RSC Advances, 2016, 6, 9812-9821.	3.6	25
49	Longer-Lasting Electron-Based Microscopy of Single Molecules in Aqueous Medium. ACS Nano, 2018, 12, 8572-8578.	14.6	24
50	Ultrafast electron energy-loss spectroscopy in transmission electron microscopy. MRS Bulletin, 2018, 43, 497-503.	3.5	22
51	Light-Induced Anisotropic Morphological Dynamics of Black Phosphorus Membranes Visualized by Dark-Field Ultrafast Electron Microscopy. ACS Nano, 2020, 14, 11383-11393.	14.6	21
52	Molecular Tripods Showing Fluorescence Enhancement upon Binding to Streptavidin. Organic Letters, 2005, 7, 111-114.	4.6	20
53	Nonchaotic Nonlinear Motion Visualized in Complex Nanostructures by Stereographic 4D Electron Microscopy. Nano Letters, 2010, 10, 3190-3198.	9.1	20
54	Viable Mixing Protocol Based on Formulated Equations for Achieving Desired Molecular Weight and Maximal Charge Separation of Photovoltaic Polymer. Advanced Energy Materials, 2021, 11, 2102594.	19.5	19

#	Article	IF	CITATIONS
55	Observing in space and time the ephemeral nucleation of liquid-to-crystal phase transitions. Nature Communications, 2015, 6, 8639.	12.8	18
56	Alcohol Dimer is Requisite to Form an Alkyl Oxonium Ion in the Proton Transfer of a Strong (Photo)Acid to Alcohol. Chemistry - A European Journal, 2016, 22, 4340-4344.	3.3	18
57	Photo-induced proton-transfer cycle of 2-naphthol in faujasite zeolitic nanocavities. Physical Chemistry Chemical Physics, 2008, 10, 153-158.	2.8	16
58	Photoinduced strong acid–weak base reactions in a polar aprotic solvent. Methods and Applications in Fluorescence, 2016, 4, 024004.	2.3	16
59	Anionic and Upper-Excited Fluorescence of C60Encapsulated in Y Zeolitic Nanocavity. Journal of Physical Chemistry B, 2001, 105, 4195-4199.	2.6	15
60	Excited-state proton transfer and geminate recombination in the molecular cage of \hat{l}^2 -cyclodextrin. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 194, 105-109.	3.9	15
61	Dimeric Capsules with a Nanoscale Cavity for [60]Fullerene Encapsulation. Chemistry - A European Journal, 2008, 14, 5353-5359.	3.3	14
62	Optimal Length of Hybrid Metal–Semiconductor Nanorods for Photocatalytic Hydrogen Generation. ACS Catalysis, 2021, 11, 13303-13311.	11.2	14
63	The critical size of hydrogen-bonded alcohol clusters as effective Brønsted bases in solutions. Physical Chemistry Chemical Physics, 2016, 18, 24880-24889.	2.8	13
64	Photoluminescence dynamics and spectra of C60 and C60â^' in VPI-5 molecular cages. Chemical Physics Letters, 2001, 346, 195-200.	2.6	11
65	Reply to Catal \tilde{A}_i n: Double-proton-transfer dynamics of photo-excited 7-azaindole dimers. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, .	7.1	11
66	Hydrogenâ€Bond Dynamics and Energetics of Biological Water. ChemPlusChem, 2020, 85, 2657-2665.	2.8	10
67	Residence and diffusion of a dynamically prototropic hydration probe in AOT reverse micelles. Journal of Molecular Liquids, 2020, 320, 114346.	4.9	8
68	Planar Organic Bilayer Heterojunctions Fabricated on Water with Ultrafast Donorâ€toâ€Acceptor Charge Transfer. Solar Rrl, 2021, 5, 2100326.	5.8	8
69	Fullerene-Based Triads with Controlled Alkyl Spacer Length as Photoactive Materials for Single-Component Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2021, 13, 43174-43185.	8.0	8
70	Cathodoluminescence in Ultrafast Electron Microscopy. ACS Nano, 2021, 15, 19480-19489.	14.6	8
71	Mesoscopic linear alignment and thermal-relaxation dynamics ofÂaggregated gold nanorods. European Physical Journal D, 2005, 34, 243-246.	1.3	7
72	Triplet-State Acidâ^Base Reactions of 1-Methyl-7-oxyquinolinium in Water. Journal of Physical Chemistry A, 2009, 113, 10589-10592.	2.5	7

#	Article	IF	CITATIONS
73	Intrachain photophysics of a donor–acceptor copolymer. Physical Chemistry Chemical Physics, 2022, 24, 1982-1992.	2.8	7
74	Acid–base reaction of a cationic hydration probe in vicinity of anionic interface of AOT reverse micelles. Journal of Molecular Liquids, 2021, 326, 115270.	4.9	6
75	Proton diffusion dynamics along a diol as a proton-conducting wire in a photo-amphiprotic model system. Physical Chemistry Chemical Physics, 2016, 18, 32826-32839.	2.8	5
76	Synergistic Configuration of Diols as Brønsted Bases. Chemistry - A European Journal, 2017, 23, 17179-17185.	3.3	4
77	Hydrogenâ€Bond Free Energy of Local Biological Water. Angewandte Chemie - International Edition, 2020, 59, 7089-7096.	13.8	4
78	Photophysics of C 60 and C 60 - in faujasite zeolites. European Physical Journal D, 2002, 18, 69-75.	1.3	3
79	Hydrogenâ€Bond Free Energy of Local Biological Water. Angewandte Chemie, 2020, 132, 7155-7162.	2.0	3
80	Ultrafast Excited-State Proton Transfer of a Cationic Superphotoacid in a Nanoscopic Water Pool. Journal of Physical Chemistry B, 2022, 126, 1275-1283.	2.6	2
81	Ab Initio Study of the Electronic Spectrum of 7-Hydroxyquinoline. Chemistry Letters, 2005, 34, 330-331.	1.3	1
82	Excited-state deprotonation dynamics of 2-naphthol in NaX nanoreactors. Studies in Surface Science and Catalysis, 2005, , 741-746.	1.5	1
83	Alcohol Dimer is Requisite to Form an Alkyl Oxonium Ion in the Proton Transfer of a Strong (Photo)Acid to Alcohol. Chemistry - A European Journal, 2016, 22, 4301-4301.	3.3	1
84	Imaging Individual Molecules Using Liquid-phase TEM - Surprises and Research Opportunities. Microscopy and Microanalysis, 2021, 27, 3-4.	0.4	1
85	<scp>Acid–base</scp> reaction of a <scp>superâ€photoacid</scp> with a cooperative amide <scp>hydrogenâ€bonded</scp> chain. Bulletin of the Korean Chemical Society, 2022, 43, 501-507.	1.9	1
86	Polymer-Mediated Proton Transfers of 7-Azaindole Embedded in Poly(2-hydroxylethyl methacrylate) Matrix. Molecular Crystals and Liquid Crystals, 2002, 377, 297-300.	0.9	0
87	Comment on "On the Doubly Hydrogen Bonded Dimer of 7-Azaindole (0.1 M) as a Model for DNA Base Pairs in Acetonitrile Solutions at Rtâ€∙ Nature Precedings, 2008, , .	0.1	0
88	Single-nanoparticle Phase Transitions Visualized by Ultrafast Electron Microscopy. , 2014, , .		0
89	Frontispiece: Synergistic Configuration of Diols as $Br\tilde{A}_{,n}$ sted Bases. Chemistry - A European Journal, 2017, 23, .	3.3	0
90	Use of a Direct Electron-Detection Camera in Ultrafast Electron Microscopy for Low Dose Rate Time-Resolved Imaging. Microscopy and Microanalysis, 2018, 24, 1962-1963.	0.4	0

#	Article	IF	CITATIONS
91	Anisotropic Structural Dynamics of Few-Layer Black Phosphorus Revealed by Ultrafast Electron Microscopy. Microscopy and Microanalysis, 2019, 25, 1650-1651.	0.4	0
92	Surface versus Bulk: Charge Carriers Play by Different Rules. CheM, 2019, 5, 497-499.	11.7	0
93	Rýcktitelbild: Hydrogenâ€Bond Free Energy of Local Biological Water (Angew. Chem. 18/2020). Angewandte Chemie, 2020, 132, 7339-7339.	2.0	0