## Anna K Liljedahl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1012087/publications.pdf Version: 2024-02-01



ΔΝΝΑ ΚΤΗΤΕΡΑΗΤ

| #  | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology.<br>Nature Geoscience, 2016, 9, 312-318.                                                                                                                          | 5.4 | 527       |
| 2  | Cold season emissions dominate the Arctic tundra methane budget. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 40-45.                                                                                            | 3.3 | 278       |
| 3  | Nonlinear controls on evapotranspiration in arctic coastal wetlands. Biogeosciences, 2011, 8, 3375-3389.                                                                                                                                                       | 1.3 | 93        |
| 4  | Deep Convolutional Neural Networks for Automated Characterization of Arctic Ice-Wedge Polygons in Very High Spatial Resolution Aerial Imagery. Remote Sensing, 2018, 10, 1487.                                                                                 | 1.8 | 83        |
| 5  | Interactions between soil thermal and hydrological dynamics in the response of Alaska ecosystems to fire disturbance. Journal of Geophysical Research, 2009, 114, .                                                                                            | 3.3 | 72        |
| 6  | Depth, ice thickness, and iceâ€out timing cause divergent hydrologic responses among Arctic lakes.<br>Water Resources Research, 2015, 51, 9379-9401.                                                                                                           | 1.7 | 66        |
| 7  | Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83). Geoscientific Model Development, 2015, 8, 2701-2722.                                                                                                      | 1.3 | 56        |
| 8  | Large CO <sub>2</sub> and CH <sub>4</sub> emissions from polygonal tundra during spring thaw in northern Alaska. Geophysical Research Letters, 2017, 44, 504-513.                                                                                              | 1.5 | 53        |
| 9  | Extrapolating active layer thickness measurements across Arctic polygonal terrain using LiDAR and <i>NDVI</i> data sets. Water Resources Research, 2014, 50, 6339-6357.                                                                                        | 1.7 | 51        |
| 10 | Physical short-term changes after a tussock tundra fire, Seward Peninsula, Alaska. Journal of<br>Geophysical Research, 2007, 112, .                                                                                                                            | 3.3 | 43        |
| 11 | Glacierized headwater streams as aquifer recharge corridors, subarctic Alaska. Geophysical Research<br>Letters, 2017, 44, 6876-6885.                                                                                                                           | 1.5 | 40        |
| 12 | Use of Very High Spatial Resolution Commercial Satellite Imagery and Deep Learning to Automatically<br>Map Ice-Wedge Polygons across Tundra Vegetation Types. Journal of Imaging, 2020, 6, 137.                                                                | 1.7 | 39        |
| 13 | Degrading permafrost mapped with electrical resistivity tomography, airborne imagery and LiDAR, and seasonal thaw measurements. Geophysics, 2016, 81, WA71-WA85.                                                                                               | 1.4 | 34        |
| 14 | Transferability of the Deep Learning Mask R-CNN Model for Automated Mapping of Ice-Wedge Polygons<br>in High-Resolution Satellite and UAV Images. Remote Sensing, 2020, 12, 1085.                                                                              | 1.8 | 33        |
| 15 | Recent Extreme Runoff Observations From Coastal Arctic Watersheds in Alaska. Water Resources<br>Research, 2017, 53, 9145-9163.                                                                                                                                 | 1.7 | 32        |
| 16 | Understanding the synergies of deep learning and data fusion of multispectral and panchromatic high resolution commercial satellite imagery for automated ice-wedge polygon detection. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 170, 174-191. | 4.9 | 32        |
| 17 | Detection and Assessment of a Large and Potentially Tsunamigenic Periglacial Landslide in Barry Arm,<br>Alaska. Geophysical Research Letters, 2020, 47, e2020GL089800.                                                                                         | 1.5 | 30        |
| 18 | Mapping snow depth within a tundra ecosystem using multiscale observations and Bayesian methods.<br>Cryosphere, 2017, 11, 857-875.                                                                                                                             | 1.5 | 28        |

Anna K Liljedahl

| #  | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Tundra water budget and implications of precipitation underestimation. Water Resources Research, 2017, 53, 6472-6486.                                                                                                                                         | 1.7 | 26        |
| 20 | Regional Patterns and Asynchronous Onset of Ice-Wedge Degradation since the Mid-20th Century in Arctic Alaska. Remote Sensing, 2018, 10, 1312.                                                                                                                | 1.8 | 25        |
| 21 | Delayed responses of an Arctic ecosystem to an extreme summer: impacts on net ecosystem exchange and vegetation functioning. Biogeosciences, 2014, 11, 5877-5888.                                                                                             | 1.3 | 24        |
| 22 | Ice roads through lake-rich Arctic watersheds: Integrating climate uncertainty and freshwater habitat responses into adaptive management. Arctic, Antarctic, and Alpine Research, 2019, 51, 9-23.                                                             | 0.4 | 22        |
| 23 | Understanding the Effects of Optimal Combination of Spectral Bands on Deep Learning Model<br>Predictions: A Case Study Based on Permafrost Tundra Landform Mapping Using High Resolution<br>Multispectral Satellite Imagery. Journal of Imaging, 2020, 6, 97. | 1.7 | 22        |
| 24 | The Roles of Climate Extremes, Ecological Succession, and Hydrology in Repeated Permafrost<br>Aggradation and Degradation in Fens on the Tanana Flats, Alaska. Journal of Geophysical Research G:<br>Biogeosciences, 2020, 125, e2020JG005824.                | 1.3 | 22        |
| 25 | Decadal-scale hotspot methane ebullition within lakes following abrupt permafrost thaw.<br>Environmental Research Letters, 2021, 16, 035010.                                                                                                                  | 2.2 | 21        |
| 26 | A lake-centric geospatial database to guide research and inform management decisions in an Arctic watershed in northern Alaska experiencing climate and land-use changes. Ambio, 2017, 46, 769-786.                                                           | 2.8 | 19        |
| 27 | An Object-Based Approach for Mapping Tundra Ice-Wedge Polygon Troughs from Very High Spatial<br>Resolution Optical Satellite Imagery. Remote Sensing, 2021, 13, 558.                                                                                          | 1.8 | 17        |
| 28 | Earlier snowmelt may lead to late season declines in plant productivity and carbon sequestration in Arctic tundra ecosystems. Scientific Reports, 2022, 12, 3986.                                                                                             | 1.6 | 16        |
| 29 | Arctic riparian shrub expansion indicates a shift from streams gaining water to those that lose flow.<br>Communications Earth & Environment, 2020, 1, .                                                                                                       | 2.6 | 15        |
| 30 | Landscape impacts of 3Dâ€seismic surveys in the Arctic National Wildlife Refuge, Alaska. Ecological Applications, 2020, 30, e02143.                                                                                                                           | 1.8 | 15        |
| 31 | The Polar WRF Downscaled Historical and Projected Twenty-First Century Climate for the Coast and Foothills of Arctic Alaska. Frontiers in Earth Science, 0, 5, .                                                                                              | 0.8 | 13        |
| 32 | The shifting mosaic of ice-wedge degradation and stabilization in response to infrastructure and climate change, Prudhoe Bay Oilfield, Alaska, USA. Arctic Science, 2022, 8, 498-530.                                                                         | 0.9 | 12        |
| 33 | An Optimal GeoAl Workflow for Pan-Arctic Permafrost Feature Detection from High-Resolution Satellite Imagery. Photogrammetric Engineering and Remote Sensing, 2022, 88, 181-188.                                                                              | 0.3 | 8         |
| 34 | Using Synthetic Aperture Radar to Define Spring Breakup on the Kuparuk River, Northern Alaska.<br>Arctic, 2014, 67, 462.                                                                                                                                      | 0.2 | 7         |
| 35 | Recursive active contours for hierarchical segmentation of wetlands in high-resolution satellite imagery of Arctic landscapes. , 2014, , .                                                                                                                    |     | 5         |
| 36 | Report from the International Permafrost Association: The Permafrost Young Researchers Network (PYRN). Permafrost and Periglacial Processes, 2009, 20, 417-419.                                                                                               | 1.5 | 3         |

Anna K Liljedahl

| #  | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Glaciers and climate of the Upper Susitna basin, Alaska. Earth System Science Data, 2020, 12, 403-427.                                                                                                                                                            | 3.7 | 1         |
| 38 | Use of Commercial Satellite Imagery to Monitor Changing Arctic Polygonal Tundra. Photogrammetric<br>Engineering and Remote Sensing, 2022, 88, 255-262.                                                                                                            | 0.3 | 1         |
| 39 | Hydrological Model Simulations and Physical Impacts of a Tundra Watershed Affected by Wildfire,<br>Seward Peninsula, Alaska. , 2005, , 1.                                                                                                                         |     | 0         |
| 40 | COUNTING ICE-WEDGE POLYGONS FROM SPACE: USE OF COMMERCIAL SATELLITE IMAGERY TO MONITOR CHANGING ARCTIC POLYGONAL TUNDRA. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLIV-M-3-2021, 67-72. | 0.2 | 0         |
| 41 | Modeled streamflow response to scenarios of tundra lake water withdrawal and seasonal climate extremes, Arctic Coastal Plain, Alaska. Water Resources Research, O, , .                                                                                            | 1.7 | 0         |