List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1011739/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Negative Modulation of Macroautophagy by Stabilized HERPUD1 is Counteracted by an Increased ER-Lysosomal Network With Impact in Drug-Induced Stress Cell Survival. Frontiers in Cell and Developmental Biology, 2022, 10, 743287.	3.7	0
2	SUMOylation stabilizes sister kinetochore biorientation to allow timely anaphase. Journal of Cell Biology, 2021, 220, .	5.2	5
3	An all-out assault on SARS-CoV-2 replication. Biochemical Journal, 2021, 478, 2399-2403.	3.7	1
4	Mechanism and function of DNA replicationâ€independent DNAâ€protein crosslink repair via the SUMOâ€RNF4 pathway. EMBO Journal, 2021, 40, e107413.	7.8	32
5	Identification of SUMO Targets Associated With the Pluripotent State in Human Stem Cells. Molecular and Cellular Proteomics, 2021, 20, 100164.	3.8	8
6	Photocrosslinking Activity-Based Probes for Ubiquitin RING E3 Ligases. Cell Chemical Biology, 2020, 27, 74-82.e6.	5.2	26
7	Functional 3D architecture in an intrinsically disordered E3 ligase domain facilitates ubiquitin transfer. Nature Communications, 2020, 11, 3807.	12.8	11
8	Downregulation of Keap1 Confers Features of a Fasted Metabolic State. IScience, 2020, 23, 101638.	4.1	21
9	Antibody RING-Mediated Destruction of Endogenous Proteins. Molecular Cell, 2020, 79, 155-166.e9.	9.7	40
10	Ubiquitin transfer by a RING E3 ligase occurs from a closed E2~ubiquitin conformation. Nature Communications, 2020, 11, 2846.	12.8	25
11	The Proteasomal Deubiquitinating Enzyme PSMD14 Regulates Macroautophagy by Controlling Golgi-to-ER Retrograde Transport. Cells, 2020, 9, 777.	4.1	12
12	An influenza virus-triggered SUMO switch orchestrates co-opted endogenous retroviruses to stimulate host antiviral immunity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17399-17408.	7.1	78
13	Structural Basis of BRCC36 Function in DNA Repair and Immune Regulation. Molecular Cell, 2019, 75, 483-497.e9.	9.7	50
14	Methods to analyze STUbL activity. Methods in Enzymology, 2019, 618, 257-280.	1.0	6
15	Sumoylation regulates protein dynamics during meiotic chromosome segregation in <i>C. elegans</i> oocytes. Journal of Cell Science, 2019, 132, .	2.0	27
16	Multiomics Analyses of HNF4α Protein Domain Function during Human Pluripotent Stem Cell Differentiation. IScience, 2019, 16, 206-217.	4.1	15
17	The S phase checkpoint promotes the Smc5/6 complex dependent SUMOylation of Pol2, the catalytic subunit of DNA polymerase ε. PLoS Genetics, 2019, 15, e1008427.	3.5	11
18	Expanded Interactome of the Intrinsically Disordered Protein Dss1. Cell Reports, 2018, 25, 862-870.	6.4	14

#	Article	IF	CITATIONS
19	RNF12 X-Linked Intellectual Disability Mutations Disrupt E3 Ligase Activity and Neural Differentiation. Cell Reports, 2018, 23, 1599-1611.	6.4	34
20	A SUMO-Dependent Protein Network Regulates Chromosome Congression during Oocyte Meiosis. Molecular Cell, 2017, 65, 66-77.	9.7	69
21	Autophagosomes cooperate in the degradation of intracellular Câ€ŧerminal fragments of the amyloid precursor protein <i>via</i> the MVB/lysosomal pathway. FASEB Journal, 2017, 31, 2446-2459.	0.5	47
22	A Proteomic Approach to Analyze the Aspirin-mediated Lysine Acetylome. Molecular and Cellular Proteomics, 2017, 16, 310-326.	3.8	45
23	Ufd1-Npl4 Recruit Cdc48 for Disassembly of Ubiquitylated CMG Helicase at the End of Chromosome Replication. Cell Reports, 2017, 18, 3033-3042.	6.4	38
24	Characterisation of the biflavonoid hinokiflavone as a pre-mRNA splicing modulator that inhibits SENP. ELife, 2017, 6, .	6.0	34
25	A Generic Platform for Cellular Screening Against Ubiquitin Ligases. Scientific Reports, 2016, 6, 18940.	3.3	18
26	Tools to Study SUMO Conjugation in Caenorhabditis elegans. Methods in Molecular Biology, 2016, 1475, 233-256.	0.9	10
27	Loss of ubiquitin E2 Ube2w rescues hypersensitivity of Rnf4 mutant cells to DNA damage. Scientific Reports, 2016, 6, 26178.	3.3	11
28	PML isoforms IV and V contribute to adenovirus-mediated oncogenic transformation by functionally inhibiting the tumor-suppressor p53. Oncogene, 2016, 35, 69-82.	5.9	18
29	Global Reprogramming of Host SUMOylation during Influenza Virus Infection. Cell Reports, 2015, 13, 1467-1480.	6.4	79
30	Identification of RNF168 as a PML nuclear body regulator. Journal of Cell Science, 2015, 129, 580-91.	2.0	14
31	Structural basis for the RING-catalyzed synthesis of K63-linked ubiquitin chains. Nature Structural and Molecular Biology, 2015, 22, 597-602.	8.2	99
32	Proteotoxic stress reprograms the chromatin landscape of SUMO modification. Science Signaling, 2015, 8, rs7.	3.6	81
33	Ubiquitin C-terminal hydrolases cleave isopeptide- and peptide-linked ubiquitin from structured proteins but do not edit ubiquitin homopolymers. Biochemical Journal, 2015, 466, 489-498.	3.7	38
34	Rapid generation of endogenously driven transcriptional reporters in cells through CRISPR/Cas9. Scientific Reports, 2015, 5, 9811.	3.3	38
35	Proteome-wide identification of SUMO modification sites by mass spectrometry. Nature Protocols, 2015, 10, 1374-1388.	12.0	56
36	Screen for multi-SUMO–binding proteins reveals a multi-SIM–binding mechanism for recruitment of the transcriptional regulator ZMYM2 to chromatin. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4854-63.	7.1	46

#	Article	IF	CITATIONS
37	Targeting of SUMO substrates to a Cdc48–Ufd1–Npl4 segregase and STUbL pathway in fission yeast. Nature Communications, 2015, 6, 8827.	12.8	25
38	Analysis of the SUMO2 Proteome during HSV-1 Infection. PLoS Pathogens, 2015, 11, e1005059.	4.7	66
39	PML isoforms in response to arsenic: high resolution analysis of PML body structure and degradation characteristics. Journal of Cell Science, 2014, 127, 365-75.	2.0	38
40	E3 Ubiquitin Ligase HOIP Attenuates Apoptotic Cell Death Induced by Cisplatin. Cancer Research, 2014, 74, 2246-2257.	0.9	61
41	Structural insight into SUMO chain recognition and manipulation by the ubiquitin ligase RNF4. Nature Communications, 2014, 5, 4217.	12.8	37
42	Dss1 Is a 26S Proteasome Ubiquitin Receptor. Molecular Cell, 2014, 56, 453-461.	9.7	81
43	Dynamic SUMO modification regulates mitotic chromosome assembly and cell cycle progression in Caenorhabditis elegans. Nature Communications, 2014, 5, 5485.	12.8	51
44	Sumoylation controls host antiâ€bacterial response to the gut invasive pathogen <i>Shigella flexneri</i> . EMBO Reports, 2014, 15, 965-972.	4.5	45
45	siRNA Screening to Identify Ubiquitin and Ubiquitin-like System Regulators of Biological Pathways in Cultured Mammalian Cells. Journal of Visualized Experiments, 2014, , .	0.3	2
46	Proteome-Wide Identification of SUMO2 Modification Sites. Science Signaling, 2014, 7, rs2.	3.6	174
47	Tetramerizationâ€defects of p53 result in aberrant ubiquitylation and transcriptional activity. Molecular Oncology, 2014, 8, 1026-1042.	4.6	20
48	Sp100 Isoform-Specific Regulation of Human Adenovirus 5 Gene Expression. Journal of Virology, 2014, 88, 6076-6092.	3.4	41
49	Family-wide analysis of poly(ADP-ribose) polymerase activity. Nature Communications, 2014, 5, 4426.	12.8	386
50	SUMO Chain-Induced Dimerization Activates RNF4. Molecular Cell, 2014, 53, 880-892.	9.7	68
51	A role for paralog-specific sumoylation in histone deacetylase 1 stability. Journal of Molecular Cell Biology, 2013, 5, 416-427.	3.3	38
52	Adenovirus DNA Replication. Cold Spring Harbor Perspectives in Biology, 2013, 5, a013003-a013003.	5.5	100
53	Decoding the SUMO signal. Biochemical Society Transactions, 2013, 41, 463-473.	3.4	105
54	Ube2W conjugates ubiquitin to α-amino groups of protein N-termini. Biochemical Journal, 2013, 453, 137-145.	3.7	90

#	Article	IF	CITATIONS
55	The P-body component USP52/PAN2 is a novel regulator of <i>HIF1A</i> mRNA stability. Biochemical Journal, 2013, 451, 185-194.	3.7	51
56	BC-box protein domain-related mechanism for VHL protein degradation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18168-18173.	7.1	33
57	SUMO-targeted ubiquitin E3 ligase RNF4 is required for the response of human cells to DNA damage. Genes and Development, 2012, 26, 1196-1208.	5.9	209
58	SUMOylation of HNF4Î \pm regulates protein stability and hepatocyte function. Journal of Cell Science, 2012, 125, 4686-4686.	2.0	2
59	SUMOylation of HNF4α regulates protein stability and hepatocyte function. Journal of Cell Science, 2012, 125, 3630-3635.	2.0	43
60	OMERO: flexible, model-driven data management for experimental biology. Nature Methods, 2012, 9, 245-253.	19.0	478
61	Detection and Quantitation of SUMO Chains by Mass Spectrometry. Methods in Molecular Biology, 2012, 832, 239-247.	0.9	8
62	Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis. Nature, 2012, 489, 115-120.	27.8	437
63	Reanalysis of phosphoproteomics data uncovers ADP-ribosylation sites. Nature Methods, 2012, 9, 771-772.	19.0	79
64	Absolute SILAC-Compatible Expression Strain Allows Sumo-2 Copy Number Determination in Clinical Samples. Journal of Proteome Research, 2011, 10, 4869-4875.	3.7	39
65	Comparative Proteomic Analysis Identifies a Role for SUMO in Protein Quality Control. Science Signaling, 2011, 4, rs4.	3.6	153
66	Purification and identification of endogenous polySUMO conjugates. EMBO Reports, 2011, 12, 142-148.	4.5	155
67	SUMO-modified nuclear cyclin D1 bypasses Ras-induced senescence. Cell Death and Differentiation, 2011, 18, 304-314.	11.2	32
68	Stable-isotope labeling with amino acids in nematodes. Nature Methods, 2011, 8, 849-851.	19.0	108
69	The SUMO protease SENP6 is a direct regulator of PML nuclear bodies. Molecular Biology of the Cell, 2011, 22, 78-90.	2.1	64
70	Functional interactions between ubiquitin E2 enzymes and TRIM proteins. Biochemical Journal, 2011, 434, 309-319.	3.7	93
71	Mechanism of ubiquitylation by dimeric RING ligase RNF4. Nature Structural and Molecular Biology, 2011, 18, 1052-1059.	8.2	157
72	Selective SUMO modification of cAMP-specific phosphodiesterase-4D5 (PDE4D5) regulates the functional consequences of phosphorylation by PKA and ERK. Biochemical Journal, 2010, 428, 55-65.	3.7	35

#	Article	IF	CITATIONS
73	The effect of SUMO modification on hepatic differentiation from hESCs. Toxicology, 2010, 278, 352.	4.2	Ο
74	Post-translational modification by SUMO. Toxicology, 2010, 278, 288-293.	4.2	105
75	SUMOylation of the GTPase Rac1 is required for optimal cell migration. Nature Cell Biology, 2010, 12, 1078-1085.	10.3	149
76	High-stringency tandem affinity purification of proteins conjugated to ubiquitin-like moieties. Nature Protocols, 2010, 5, 873-882.	12.0	16
77	HSP90 Protein Stabilizes Unloaded Argonaute Complexes and Microscopic P-bodies in Human Cells. Molecular Biology of the Cell, 2010, 21, 1462-1469.	2.1	143
78	Arsenic-Induced SUMO-Dependent Recruitment of RNF4 into PML Nuclear Bodies. Molecular Biology of the Cell, 2010, 21, 4227-4239.	2.1	63
79	Oligomerization conditions Mdm2-mediated efficient p53 polyubiquitylation but not its proteasomal degradation. International Journal of Biochemistry and Cell Biology, 2010, 42, 725-735.	2.8	12
80	FRET-Based In Vitro Assays for the Analysis of SUMO Protease Activities. Methods in Molecular Biology, 2009, 497, 253-268.	0.9	18
81	Mutations of <i>NFKBIA</i> , encoding lκBα, are a recurrent finding in classical Hodgkin lymphoma but are not a unifying feature of nonâ€EBVâ€associated cases. International Journal of Cancer, 2009, 125, 1334-1342.	5.1	85
82	Isoâ€ <i>seco</i> â€ŧanapartholides: Isolation, Synthesis and Biological Evaluation. European Journal of Organic Chemistry, 2009, 2009, 5711-5715.	2.4	25
83	Detection of protein SUMOylation in vivo. Nature Protocols, 2009, 4, 1363-1371.	12.0	144
84	An additional role for SUMO in ubiquitin-mediated proteolysis. Nature Reviews Molecular Cell Biology, 2009, 10, 564-568.	37.0	231
85	System-Wide Changes to SUMO Modifications in Response to Heat Shock. Science Signaling, 2009, 2, ra24.	3.6	415
86	Characterization of SENP7, a SUMO-2/3-specific isopeptidase. Biochemical Journal, 2009, 421, 223-230.	3.7	88
87	Quantitative analysis of multiâ€protein interactions using FRET: Application to the SUMO pathway. Protein Science, 2008, 17, 777-784.	7.6	50
88	Ribosomal proteins are targets for the NEDD8 pathway. EMBO Reports, 2008, 9, 280-286.	4.5	147
89	Single-stranded DNA-binding protein hSSB1 is critical for genomic stability. Nature, 2008, 453, 677-681.	27.8	220
90	RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nature Cell Biology, 2008, 10, 538-546.	10.3	746

#	Article	IF	CITATIONS
91	NF-κB is a critical regulator of the survival of rodent and human hepatic myofibroblasts. Journal of Hepatology, 2008, 48, 589-597.	3.7	55
92	In Vivo Identification of Human Small Ubiquitin-like Modifier Polymerization Sites by High Accuracy Mass Spectrometry and an in Vitro to in Vivo Strategy. Molecular and Cellular Proteomics, 2008, 7, 132-144.	3.8	251
93	Correction: Human Topoisomerase 2α Conjugates with SUMO-2. Cancer Research, 2008, 68, 3076-3076.	0.9	0
94	Conjugation of Human Topoisomerase 2α with Small Ubiquitin-like Modifiers 2/3 in Response to Topoisomerase Inhibitors: Cell Cycle Stage and Chromosome Domain Specificity. Cancer Research, 2008, 68, 2409-2418.	0.9	61
95	Medea SUMOylation restricts the signaling range of the Dpp morphogen in the <i>Drosophila</i> embryo. Genes and Development, 2008, 22, 2578-2590.	5.9	45
96	SUMO Modification Regulates MafB-Driven Macrophage Differentiation by Enabling Myb-Dependent Transcriptional Repression. Molecular and Cellular Biology, 2007, 27, 5554-5564.	2.3	41
97	Nuclear Factor-ήB Activation via Tyrosine Phosphorylation of Inhibitor ήB-α Is Crucial for Ciliary Neurotrophic Factor-Promoted Neurite Growth from Developing Neurons. Journal of Neuroscience, 2007, 27, 9664-9669.	3.6	53
98	Modification of nuclear PML protein by SUMO-1 regulates Fas-induced apoptosis in rheumatoid arthritis synovial fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5073-5078.	7.1	119
99	Modulation of Aβ generation by small ubiquitin-like modifiers does not require conjugation to target proteins. Biochemical Journal, 2007, 404, 309-316.	3.7	59
100	A fluorescence-resonance-energy-transfer-based protease activity assay and its use to monitor paralog-specific small ubiquitin-like modifier processing. Analytical Biochemistry, 2007, 363, 83-90.	2.4	28
101	Apoptin is modified by SUMO conjugation and targeted to promyelocytic leukemia protein nuclear bodies. Oncogene, 2007, 26, 1557-1566.	5.9	32
102	SUMO modification of the DEAD box protein p68 modulates its transcriptional activity and promotes its interaction with HDAC1. Oncogene, 2007, 26, 5866-5876.	5.9	69
103	SUMO-specific proteases: a twist in the tail. Trends in Cell Biology, 2007, 17, 370-376.	7.9	253
104	Repression of SOX6 transcriptional activity by SUMO modification. FEBS Letters, 2006, 580, 1215-1221.	2.8	23
105	Detection of modification by ubiquitin-like proteins. Methods, 2006, 38, 35-38.	3.8	34
106	The structure of SENP1–SUMO-2 complex suggests a structural basis for discrimination between SUMO paralogues during processing. Biochemical Journal, 2006, 397, 279-288.	3.7	121
107	SUMO protease SENP1 induces isomerization of the scissile peptide bond. Nature Structural and Molecular Biology, 2006, 13, 1069-1077.	8.2	110
108	Distinct and Overlapping Sets of SUMO-1 and SUMO-2 Target Proteins Revealed by Quantitative Proteomics. Molecular and Cellular Proteomics, 2006, 5, 2298-2310.	3.8	274

#	Article	IF	CITATIONS
109	Posttranslational hydroxylation of ankyrin repeats in IÂB proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH). Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14767-14772.	7.1	258
110	Role of Ubiquitin-Like Proteins in Transcriptional Regulation. , 2006, , 173-192.		24
111	Unique binding interactions among Ubc9, SUMO and RanBP2 reveal a mechanism for SUMO paralog selection. Nature Structural and Molecular Biology, 2005, 12, 67-74.	8.2	125
112	Structural basis of NEDD8 ubiquitin discrimination by the deNEDDylating enzyme NEDP1. EMBO Journal, 2005, 24, 1341-1351.	7.8	103
113	SUMO-1 Modification of Human Transcription Factor (TF) IID Complex Subunits. Journal of Biological Chemistry, 2005, 280, 9937-9945.	3.4	35
114	Regulation of Homeodomain-interacting Protein Kinase 2 (HIPK2) Effector Function through Dynamic Small Ubiquitin-related Modifier-1 (SUMO-1) Modification. Journal of Biological Chemistry, 2005, 280, 29224-29232.	3.4	50
115	SIRT1 Deacetylation and Repression of p300 Involves Lysine Residues 1020/1024 within the Cell Cycle Regulatory Domain 1. Journal of Biological Chemistry, 2005, 280, 10264-10276.	3.4	301
116	SUMO Modification of the Ets-related Transcription Factor ERM Inhibits Its Transcriptional Activity. Journal of Biological Chemistry, 2005, 280, 24330-24338.	3.4	41
117	SUMO-1 Modification Alters ADAR1 Editing Activity. Molecular Biology of the Cell, 2005, 16, 5115-5126.	2.1	102
118	The Protein Stability and Transcriptional Activity of p63α are Regulated by SUMO-1 Conjugation. Cell Cycle, 2005, 4, 183-190.	2.6	104
119	Fourier Transform Ion Cyclotron Resonance Mass Spectrometry for the Analysis of Small Ubiquitin-like Modifier (SUMO) Modification:Â Identification of Lysines in RanBP2 and SUMO Targeted for Modification during the E3 AutoSUMOylation Reaction. Analytical Chemistry, 2005, 77, 6310-6319.	6.5	51
120	SUMO. Molecular Cell, 2005, 18, 1-12.	9.7	1,468
121	Inhibition of NF-κB by a cell permeable form of IκBα induces apoptosis in eosinophils. Biochemical and Biophysical Research Communications, 2005, 326, 632-637.	2.1	35
122	Dual role of the adenovirus pVI C terminus as a nuclear localization signal and activator of the viral protease. Journal of General Virology, 2004, 85, 3367-3376.	2.9	10
123	A Proteomic Study of SUMO-2 Target Proteins. Journal of Biological Chemistry, 2004, 279, 33791-33798.	3.4	197
124	Modifiying NEMO. Nature Cell Biology, 2004, 6, 89-91.	10.3	25
125	Hydrodynamic bead modelling of the 2:1 p50–lκBγ complex. Biophysical Chemistry, 2004, 108, 259-271.	2.8	0
126	Identification of Sites of Ubiquitination in Proteins:Â A Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Approach. Analytical Chemistry, 2004, 76, 6982-6988.	6.5	50

#	Article	IF	CITATIONS
127	Mdm2-Mediated NEDD8 Conjugation of p53 Inhibits Its Transcriptional Activity. Cell, 2004, 118, 83-97.	28.9	477
128	SUMO and transcriptional regulation. Seminars in Cell and Developmental Biology, 2004, 15, 201-210.	5.0	158
129	A Mechanism for Inhibiting the SUMO Pathway. Molecular Cell, 2004, 16, 549-561.	9.7	164
130	A Functional Interaction Between RHA and Ubc9, an E2-like Enzyme Specific for Sumo-1. Journal of Molecular Biology, 2004, 341, 15-25.	4.2	13
131	Activation of NF-κB nuclear transcription factor by flow in human endothelial cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2003, 1642, 33-44.	4.1	34
132	Role of an N-Terminal Site of Ubc9 in SUMO-1, -2, and -3 Binding and Conjugationâ€. Biochemistry, 2003, 42, 9959-9969.	2.5	89
133	Role of Two Residues Proximal to the Active Site of Ubc9 in Substrate Recognition by the Ubc9·SUMO-1 Thiolester Complexâ€. Biochemistry, 2003, 42, 3168-3179.	2.5	46
134	p300 Transcriptional Repression Is Mediated by SUMO Modification. Molecular Cell, 2003, 11, 1043-1054.	9.7	406
135	Dynamic Interplay of the SUMO and ERK Pathways in Regulating Elk-1 Transcriptional Activity. Molecular Cell, 2003, 12, 63-74.	9.7	231
136	NEDP1, a Highly Conserved Cysteine Protease That deNEDDylates Cullins. Journal of Biological Chemistry, 2003, 278, 25637-25643.	3.4	170
137	βTrCP-Mediated Proteolysis of NF-κB1 p105 Requires Phosphorylation of p105 Serines 927 and 932. Molecular and Cellular Biology, 2003, 23, 402-413.	2.3	119
138	Identification of a Substrate Recognition Site on Ubc9. Journal of Biological Chemistry, 2002, 277, 21740-21748.	3.4	107
139	Androgen Receptor Acetylation Governs trans Activation and MEKK1-Induced Apoptosis without Affecting In Vitro Sumoylation and trans -Repression Function. Molecular and Cellular Biology, 2002, 22, 3373-3388.	2.3	155
140	P14ARF promotes accumulation of SUMO-1 conjugated (H)Mdm2. FEBS Letters, 2002, 528, 207-211.	2.8	78
141	Inhibition of nuclear factor-l̂ºB activation un-masks the ability of TNF-l̂± to induce human eosinophil apoptosis. European Journal of Immunology, 2002, 32, 457-466.	2.9	58
142	Protein modification by SUMO. Trends in Biochemical Sciences, 2001, 26, 332-333.	7.5	140
143	SUMO-1 Conjugation in Vivo Requires Both a Consensus Modification Motif and Nuclear Targeting. Journal of Biological Chemistry, 2001, 276, 12654-12659.	3.4	650
144	Interaction between hnRNPA1 and lκBα Is Required for Maximal Activation of NF-κB-Dependent Transcription. Molecular and Cellular Biology, 2001, 21, 3482-3490.	2.3	55

#	Article	IF	CITATIONS
145	Common Properties of Nuclear Body Protein SP100 and TIF1α Chromatin Factor: Role of SUMO Modification. Molecular and Cellular Biology, 2001, 21, 3314-3324.	2.3	118
146	Polymeric Chains of SUMO-2 and SUMO-3 Are Conjugated to Protein Substrates by SAE1/SAE2 and Ubc9. Journal of Biological Chemistry, 2001, 276, 35368-35374.	3.4	690
147	Role of conserved residues in the activity of adenovirus preterminal protein. Journal of General Virology, 2001, 82, 1917-1927.	2.9	10
148	Cytokine-Induced Nuclear Factor Kappa B Activation Promotes the Survival of Developing Neurons. Journal of Cell Biology, 2000, 148, 325-332.	5.2	141
149	Aphid Acquisition and Cellular Transport of Potato leafroll virus-like Particles Lacking P5 Readthrough Protein. Phytopathology, 2000, 90, 1153-1161.	2.2	58
150	An N-terminal p14ARF peptide blocks Mdm2-dependent ubiquitination in vitro and can activate p53 in vivo. Oncogene, 2000, 19, 2312-2323.	5.9	240
151	Activation of NF-κB by PM10 Occurs via an Iron-Mediated Mechanism in the Absence of IκB Degradation. Toxicology and Applied Pharmacology, 2000, 166, 101-110.	2.8	174
152	Regulation of transcription factors by protein degradation. Cellular and Molecular Life Sciences, 2000, 57, 1207-1219.	5.4	88
153	Multiple C-Terminal Lysine Residues Target p53 for Ubiquitin-Proteasome-Mediated Degradation. Molecular and Cellular Biology, 2000, 20, 8458-8467.	2.3	337
154	NF-κB Inhibits Apoptosis in Murine Mammary Epithelia. Journal of Biological Chemistry, 2000, 275, 12737-12742.	3.4	109
155	Identification of Conserved Residues Contributing to the Activities of Adenovirus DNA Polymerase. Journal of Virology, 2000, 74, 11681-11689.	3.4	23
156	Cytokine-induced Nuclear Factor Kappa B Activation Promotes the Survival of Developing Neurons. Journal of Cell Biology, 2000, 148, 325-332.	5.2	17
157	Characterisation of the adenovirus preterminal protein and its interaction with the POU homeodomain of NFIII (Oct-1). Nucleic Acids Research, 1999, 27, 2799-2805.	14.5	16
158	Role of the conserved lysine 80 in stabilisation of NF-ÂB p50 DNA binding. Nucleic Acids Research, 1999, 27, 503-509.	14.5	9
159	Characterization of lκBα Nuclear Import Pathway. Journal of Biological Chemistry, 1999, 274, 6804-6812.	3.4	109
160	Identification of the Enzyme Required for Activation of the Small Ubiquitin-like Protein SUMO-1. Journal of Biological Chemistry, 1999, 274, 10618-10624.	3.4	306
161	Calpain 3 deficiency is associated with myonuclear apoptosis and profound perturbation of the ll̂ºBα/NF-l̂ºB pathway in limb-girdle muscular dystrophy type 2A. Nature Medicine, 1999, 5, 503-511.	30.7	261
162	Mutations in the lkBa gene in Hodgkin's disease suggest a tumour suppressor role for ll̂Bl̂±. Oncogene, 1999, 18, 3063-3070.	5.9	330

#	Article	IF	CITATIONS
163	SUMO-1 modification activates the transcriptional response of p53. EMBO Journal, 1999, 18, 6455-6461.	7.8	602
164	Nuclear Retention of lκBα Protects It from Signal-induced Degradation and Inhibits Nuclear Factor κB Transcriptional Activation. Journal of Biological Chemistry, 1999, 274, 9108-9115.	3.4	221
165	Persistent activation of nuclear factor-?B in cultured rat hepatic stellate cells involves the induction of potentially novel rel-like factors and prolonged changes in the expression of I?B family proteins. Hepatology, 1999, 30, 761-769.	7.3	131
166	A complex containing βTrCP recruits Ccd34 to catalyse ubiquitination of lκBα. FEBS Letters, 1999, 455, 311-314.	2.8	18
167	Control of NF–κB transcriptional activation by signal induced proteolysis of lκBα. Philosophical Transactions of the Royal Society B: Biological Sciences, 1999, 354, 1601-1609.	4.0	79
168	p75-Mediated NF-κB Activation Enhances the Survival Response of Developing Sensory Neurons to Nerve Growth Factor. Molecular and Cellular Neurosciences, 1999, 14, 28-40.	2.2	177
169	Defective lκBα in Hodgkin cell lines with constitutively active NF-κB. Oncogene, 1998, 16, 2131-2139.	5.9	130
170	SUMO-1 Modification of ll°Bα Inhibits NF-ΰB Activation. Molecular Cell, 1998, 2, 233-239.	9.7	982
171	Adenovirus DNA polymerase: domain organisation and interaction with preterminal protein. Nucleic Acids Research, 1998, 26, 1240-1247.	14.5	23
172	Human Immunodeficiency Virus Type 1 (HIV-1) Viral Protein R (Vpr) Interacts with Lys-tRNA Synthetase: Implications for Priming of HIV-1 Reverse Transcription. Journal of Virology, 1998, 72, 3037-3044.	3.4	60
173	Ubch9 conjugates SUMO but not ubiquitin. FEBS Letters, 1997, 417, 297-300.	2.8	314
174	The carboxy-terminus of $\hat{I^{p}Bl_{\pm}}$ determines susceptibility to degradation by the catalytic core of the proteasome. Oncogene, 1997, 15, 1841-1850.	5.9	35
175	Pyridoxal 5′-Phosphate Inhibition of Adenovirus DNA Polymerase. Journal of Biological Chemistry, 1996, 271, 24242-24248.	3.4	10
176	Role of I Bα Ubiquitination in Signal-induced Activation of NF- B in Vivo. Journal of Biological Chemistry, 1996, 271, 7844-7850.	3.4	206
177	Assembly of virus-like particles in insect cells infected with a baculovirus containing a modified coat protein gene of potato leafroll luteovirus. Journal of General Virology, 1996, 77, 1349-1358.	2.9	34
178	Inhibition of NF-ÂB DNA Binding by Nitric Oxide. Nucleic Acids Research, 1996, 24, 2236-2242.	14.5	500
179	Absolute dependence on kappa B responsive elements for initiation and Tat-mediated amplification of HIV transcription in blood CD4 T lymphocytes EMBO Journal, 1995, 14, 1552-1560.	7.8	214
180	Conformational changes induced by DNA binding of NF-κB. Nucleic Acids Research, 1995, 23, 3393-3402.	14.5	34

#	Article	IF	CITATIONS
181	Regulation of the DNA binding activity of NF-κB. International Journal of Biochemistry and Cell Biology, 1995, 27, 865-879.	2.8	67
182	zeta PKC induces phosphorylation and inactivation of I kappa B-alpha in vitro EMBO Journal, 1994, 13, 2842-2848.	7.8	216
183	Expression of a foreign epitope on the surface of the adenovirus hexon. Journal of General Virology, 1994, 75, 133-139.	2.9	68
184	Adenovirus DNA binding protein: helix destabilising properties. Nucleic Acids Research, 1994, 22, 742-748.	14.5	49
185	The adenovirus protease is activated by a virus-coded disulphide-linked peptide. Cell, 1993, 72, 97-104.	28.9	175
186	DNA binding alters the protease susceptibility of the p50 subunit of NF-ϰB. Nucleic Acids Research, 1993, 21, 4592-4598.	14.5	12
187	Role of cysteine62in DNA recognition by the P50 subunit of NF-xB. Nucleic Acids Research, 1993, 21, 1727-1734.	14.5	147
188	Proteolytic degradation of MAD3 (IϰBα) and enhanced processing of the NF-ϰB precursor p105 are obligatory steps in the activation of NF-ϰB. Nucleic Acids Research, 1993, 21, 5059-5066.	14.5	196
189	Interaction of the C-terminal region of p105 with the nuclear localisation signal of p50 is required for inhinition of NF-I°B binding activity. Nucleic Acids Research, 1993, 21, 4516-4523.	14.5	36
190	Control of nuclear factor- <i>k</i> B DNA-binding activity by inhibitory proteins containing ankyrin repeats. Biochemical Society Transactions, 1993, 21, 926-930.	3.4	12
191	Thiordoxin regulates the DNA binding activity of NF-χB by reduction of a disulphid bond involving cysteine 62. Nucleic Acids Research, 1992, 20, 3821-3830.	14.5	791
192	Antipeptide antisera define neutralizing epitopes on the adenovirus hexon. Journal of General Virology, 1992, 73, 1429-1435.	2.9	113
193	NF-kappa B-dependent induction of the NF-kappa B p50 subunit gene promoter underlies self-perpetuation of human immunodeficiency virus transcription in monocytic cells Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 7826-7830.	7.1	74
194	Extra-pair paternity in the shag,Phalacrocorax aristotelisas determined by DNA fingerprinting. Journal of Zoology, 1992, 226, 399-408.	1.7	49
195	Recognition of the adenovirus type 2 origin of DNA replication by the virally encoded DNA polymerase and preterminal proteins EMBO Journal, 1992, 11, 761-768.	7.8	71
196	Replication of adenovirus type 4 DNA by a Purified fraction from infected Cells. Nucleic Acids Research, 1991, 19, 3243-3249.	14.5	21
197	The DNA-binding Domain of Nuclear Factor I is Sufficient to Cooperate with the Adenovirus Type 2 DNA-binding Protein in Viral DNA Replication. Journal of General Virology, 1991, 72, 2975-2980.	2.9	17
198	Ribozymes that cleave potato leafroll virus RNA within the coat protein and polymerase genes. Journal of General Virology, 1990, 71, 2257-2264.	2.9	29

#	Article	IF	CITATIONS
199	Expression of adenovirus type 2 DNA polymerase in insect cells infected with a recombinant baculovirus. Nucleic Acids Research, 1990, 18, 1167-1173.	14.5	32
200	Expression of the genome of potato leafroll virus: readthrough of the coat protein termination codon in vivo. Journal of General Virology, 1990, 71, 2251-2256.	2.9	99
201	Co-operative interactions between NFI and the adenovirus DNA binding protein at the adenovirus origin of replication EMBO Journal, 1989, 8, 1841-1848.	7.8	65
202	Adenovirus Subviral Particles and Cores Can Support Limited DNA Replication. Journal of General Virology, 1989, 70, 3235-3248.	2.9	22
203	Sequence requirement for specific interaction of an enhancer binding protein (EBP1) with DNA. Nucleic Acids Research, 1989, 17, 499-516.	14.5	45
204	Enhancer binding protein (EBP1) makes base and backbone contacts over one complete turn of the DNA double helix. Journal of Molecular Biology, 1989, 206, 615-626.	4.2	24
205	Kinetic analysis of nuclear factor I and its DNA-binding domain with the adenovirus origin of replication. FEBS Letters, 1989, 258, 51-54.	2.8	4
206	Recognition mechanisms in the synthesis of animal virus DNA. Biochemical Journal, 1989, 258, 3-16.	3.7	78
207	The Adenovirus Type 40 Hexon: Sequence, Predicted Structure and Relationship to Other Adenovirus Hexons. Journal of General Virology, 1989, 70, 3203-3214.	2.9	69
208	DNA sequences required for the initiation of adenovirus type 4 DNA replication in vitro. Journal of Molecular Biology, 1988, 201, 57-67.	4.2	37
209	Identification and purification of EBP1: a HeLa cell protein that binds to a region overlapping the 'core' of the SV40 enhancer Genes and Development, 1988, 2, 991-1002.	5.9	76
210	Detection of Z DNA binding proteins in tissue culture cells. Nucleic Acids Research, 1988, 16, 8277-8289.	14.5	18
211	DNA Sequence of the Adenovirus Type 41 Hexon Gene and Predicted Structure of the Protein. Journal of General Virology, 1988, 69, 2291-2301.	2.9	59
212	A cellular protein binds to a conserved sequence in the adenovirus type 2 enhancer. Nucleic Acids Research, 1987, 15, 2719-2735.	14.5	27
213	Viable Viruses with Deletions in the Left Inverted Terminal Repeat Define the Adenovirus Origin of DNA Replication. Journal of General Virology, 1986, 67, 321-332.	2.9	41
214	The origin of adenovirus DNA replication: minimal DNA sequence requirement in vivo EMBO Journal, 1985, 4, 421-426.	7.8	110
215	Origin of adenovirus DNA replication. Journal of Molecular Biology, 1985, 186, 129-136.	4.2	79
216	Replication of adenovirus mini-chromosomes. Journal of Molecular Biology, 1984, 175, 493-510.	4.2	89

#	Article	IF	CITATIONS
217	Sequence specificity for the initiation of RNA-primed simian virus 40 DNA synthesis in vivo. Journal of Molecular Biology, 1984, 175, 131-157.	4.2	80
218	Initiation of SV40 DNA replication in vivo: Location and structure of 5′ ends of DNA synthesized in the ori region. Cell, 1982, 28, 767-779.	28.9	294
219	Characteristics of chromatin preparations from herpes simplex virus infected cells. Nucleic Acids and Protein Synthesis, 1981, 655, 71-81.	1.7	3
220	Properties of herpesvirus-induced "immediate early―polypeptides. Virology, 1980, 104, 230-234.	2.4	79
221	Synthesis of Herpes Simplex Virus DNA in Preparations of Chromatin from Infected Cell Nuclei. Journal of General Virology, 1978, 41, 427-431.	2.9	7