Daniela Rottoli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10115659/publications.pdf

Version: 2024-02-01

41 papers 4,512 citations

147726 31 h-index 276775 41 g-index

41 all docs

41 docs citations

41 times ranked 5446 citing authors

#	Article	IF	CITATIONS
1	Mesenchymal Stem Cells Are Renotropic, Helping to Repair the Kidney and Improve Function in Acute Renal Failure. Journal of the American Society of Nephrology: JASN, 2004, 15, 1794-1804.	3.0	690
2	Disruption of the Ang II type 1 receptor promotes longevity in mice. Journal of Clinical Investigation, 2009, $119,524-530$.	3.9	434
3	Human Bone Marrow Mesenchymal Stem Cells Accelerate Recovery of Acute Renal Injury and Prolong Survival in Mice. Stem Cells, 2008, 26, 2075-2082.	1.4	351
4	Sirtuin 3–dependent mitochondrial dynamic improvements protect against acute kidney injury. Journal of Clinical Investigation, 2015, 125, 715-726.	3.9	335
5	Insulin-Like Growth Factor-1 Sustains Stem Cell–Mediated Renal Repair. Journal of the American Society of Nephrology: JASN, 2007, 18, 2921-2928.	3.0	294
6	Alternative Pathway Activation of Complement by Shiga Toxin Promotes Exuberant C3a Formation That Triggers Microvascular Thrombosis. Journal of Immunology, 2011, 187, 172-180.	0.4	220
7	Add-On Anti–TGF-β Antibody to ACE Inhibitor Arrests Progressive Diabetic Nephropathy in the Rat. Journal of the American Society of Nephrology: JASN, 2003, 14, 1816-1824.	3.0	177
8	How To Fully Protect the Kidney in a Severe Model of Progressive Nephropathy: A Multidrug Approach. Journal of the American Society of Nephrology: JASN, 2002, 13, 2898-2908.	3.0	156
9	Transforming Growth Factor- \hat{l}^21 Is Up-Regulated by Podocytes in Response to Excess Intraglomerular Passage of Proteins. American Journal of Pathology, 2002, 161, 2179-2193.	1.9	138
10	Human mesenchymal stromal cells transplanted into mice stimulate renal tubular cells and enhance mitochondrial function. Nature Communications, 2017, 8, 983.	5.8	124
11	Protein Overload Induces Fractalkine Upregulation in Proximal Tubular Cells through Nuclear Factor κB– and p38 Mitogen-Activated Protein Kinase–Dependent Pathways. Journal of the American Society of Nephrology: JASN, 2003, 14, 2436-2446.	3.0	118
12	Unlike each drug alone, lisinopril if combined with avosentan promotes regression of renal lesions in experimental diabetes. American Journal of Physiology - Renal Physiology, 2009, 297, F1448-F1456.	1.3	114
13	Proximal tubular cells promote fibrogenesis by TGF-β1–mediated induction of peritubular myofibroblasts. Kidney International, 2002, 61, 2066-2077.	2.6	109
14	Effect of combining ACE inhibitor and statin in severe experimental nephropathy. Kidney International, 2002, 61, 1635-1645.	2.6	103
15	Antiproteinuric Therapy while Preventing the Abnormal Protein Traffic in Proximal Tubule Abrogates Protein- and Complement-Dependent Interstitial Inflammation in Experimental Renal Disease. Journal of the American Society of Nephrology: JASN, 1999, 10, 804-813.	3.0	99
16	Transcriptional Regulation of Nephrin Gene by Peroxisome Proliferator–Activated Receptor-γ Agonist: Molecular Mechanism of the Antiproteinuric Effect of Pioglitazone. Journal of the American Society of Nephrology: JASN, 2006, 17, 1624-1632.	3.0	76
17	Renal Expression of FGF23 in Progressive Renal Disease of Diabetes and the Effect of Ace Inhibitor. PLoS ONE, 2013, 8, e70775.	1.1	75
18	Imatinib ameliorates renal disease and survival in murine lupus autoimmune disease. Kidney International, 2006, 70, 97-103.	2.6	71

#	Article	lF	Citations
19	Rosuvastatin Treatment Prevents Progressive Kidney Inflammation and Fibrosis in Stroke-Prone Rats. American Journal of Pathology, 2007, 170, 1165-1177.	1.9	70
20	Complement-Mediated Dysfunction of Glomerular Filtration Barrier Accelerates Progressive Renal Injury. Journal of the American Society of Nephrology: JASN, 2008, 19, 1158-1167.	3.0	63
21	V1/V2 Vasopressin receptor antagonism potentiates the renoprotection of renin–angiotensin system inhibition in rats with renal mass reduction. Kidney International, 2009, 76, 960-967.	2.6	56
22	Distinct cardiac and renal effects of ET _A receptor antagonist and ACE inhibitor in experimental type 2 diabetes. American Journal of Physiology - Renal Physiology, 2011, 301, F1114-F1123.	1.3	56
23	MicroRNA-184 is a downstream effector of albuminuria driving renal fibrosis in rats with diabetic nephropathy. Diabetologia, 2017, 60, 1114-1125.	2.9	54
24	Vasopeptidase inhibitor restores the balance of vasoactive hormones in progressive nephropathy. Kidney International, 2004, 66, 1959-1965.	2.6	52
25	Shiga Toxin Promotes Podocyte Injury in Experimental Hemolytic Uremic Syndrome via Activation of the Alternative Pathway of Complement. Journal of the American Society of Nephrology: JASN, 2014, 25, 1786-1798.	3.0	52
26	Mycophenolate mofetil combined with a cyclooxygenase-2 inhibitor ameliorates murine lupus nephritis. Kidney International, 2001, 60, 653-663.	2.6	49
27	Cyclin-dependent kinase inhibition limits glomerulonephritis and extends lifespan of mice with systemic lupus. Arthritis and Rheumatism, 2007, 56, 1629-1637.	6.7	46
28	Beneficial Effect of $TGF\hat{1}^2$ Antagonism in Treating Diabetic Nephropathy Depends on When Treatment Is Started. Nephron Experimental Nephrology, 2006, 104, e158-e168.	2.4	43
29	Effects of MCP-1 Inhibition by Bindarit Therapy in a Rat Model of Polycystic Kidney Disease. Nephron, 2015, 129, 52-61.	0.9	43
30	Fractalkine and CX3CR1 Mediate Leukocyte Capture by Endothelium in Response to Shiga Toxin. Journal of Immunology, 2008, 181, 1460-1469.	0.4	37
31	Therapy with a Selective Cannabinoid Receptor Type 2 Agonist Limits Albuminuria and Renal Injury in Mice with Type 2 Diabetic Nephropathy. Nephron, 2016, 132, 59-69.	0.9	36
32	Addition of cyclic angiotensin-(1-7) to angiotensin-converting enzyme inhibitor therapy has a positiveÂadd-on effect in experimental diabeticÂnephropathy. Kidney International, 2019, 96, 906-917.	2.6	31
33	Therapeutic potential of stromal cells of non-renal or renal origin in experimental chronic kidney disease. Stem Cell Research and Therapy, 2018, 9, 220.	2.4	26
34	Mitochondrial-dependent Autoimmunity in Membranous Nephropathy of IgG4-related Disease. EBioMedicine, 2015, 2, 456-466.	2.7	24
35	COVID-19 Attacks the Kidney: Ultrastructural Evidence for the Presence of Virus in the Glomerular Epithelium. Nephron, 2020, 144, 341-342.	0.9	24
36	Empagliflozin protects glomerular endothelial cell architecture in experimental diabetes through the <scp>VEGFâ€A</scp> /caveolinâ€1/ <scp>PV</scp> â€1 signaling pathway. Journal of Pathology, 2022, 256, 468-479.	2.1	21

#	Article	IF	CITATIONS
37	The Role of Angiotensin II in Parietal Epithelial Cell Proliferation and Crescent Formation in Glomerular Diseases. American Journal of Pathology, 2017, 187, 2441-2450.	1.9	20
38	Fenofibrate attenuates cardiac and renal alterations in young salt-loaded spontaneously hypertensive stroke-prone rats through mitochondrial protection. Journal of Hypertension, 2018, 36, 1129-1146.	0.3	14
39	Characterization of a Rat Model of Myeloperoxidase-Anti-Neutrophil Cytoplasmic Antibody-Associated Crescentic Glomerulonephritis. Nephron, 2021, 145, 428-444.	0.9	5
40	Histological Examination of the Diabetic Kidney. Methods in Molecular Biology, 2020, 2067, 63-87.	0.4	4
41	Therapeutic Small Interfering RNA Targeting Complement C3 in a Mouse Model of C3 Glomerulopathy. Journal of Immunology, 2022, 208, 1772-1781.	0.4	2