
Ann-Kathrin Stock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1011504/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A consensus guide to capturing the ability to inhibit actions and impulsive behaviors in the stop-signal task. ELife, 2019, 8, .	6.0	479
2	Psychophysiological Mechanisms of Interindividual Differences in Goal Activation Modes During Action Cascading. Cerebral Cortex, 2014, 24, 2120-2129.	2.9	135
3	Addiction Research Consortium: Losing and regaining control over drug intake (ReCoDe)—From trajectories to mechanisms and interventions. Addiction Biology, 2020, 25, e12866.	2.6	135
4	Effects of Concomitant Stimulation of the GABAergic and Norepinephrine System on Inhibitory Control – A Study Using Transcutaneous Vagus Nerve Stimulation. Brain Stimulation, 2016, 9, 811-818.	1.6	92
5	A systems neurophysiology approach to voluntary event coding. NeuroImage, 2016, 135, 324-332.	4.2	64
6	<i>DRD1</i> and <i>DRD2</i> Genotypes Modulate Processing Modes of Goal Activation Processes during Action Cascading. Journal of Neuroscience, 2014, 34, 5335-5341.	3.6	61
7	Interacting sources of interference during sensorimotor integration processes. Neurolmage, 2016, 125, 342-349.	4.2	61
8	Updating the Definition of the Alcohol Hangover. Journal of Clinical Medicine, 2020, 9, 823.	2.4	58
9	Applying deep learning to single-trial EEG data provides evidence for complementary theories on action control. Communications Biology, 2020, 3, 112.	4.4	58
10	Latent Toxoplasma gondii infection leads to improved action control. Brain, Behavior, and Immunity, 2014, 37, 103-108.	4.1	49
11	Using temporal EEG signal decomposition to identify specific neurophysiological correlates of distractor-response bindings proposed by the theory of event coding. NeuroImage, 2020, 209, 116524.	4.2	49
12	Action Video Gaming and Cognitive Control: Playing First Person Shooter Games Is Associated with Improved Action Cascading but Not Inhibition. PLoS ONE, 2015, 10, e0144364.	2.5	46
13	On the effects of multimodal information integration in multitasking. Scientific Reports, 2017, 7, 4927.	3.3	46
14	The impact of mental workload on inhibitory control subprocesses. Neurolmage, 2015, 112, 96-104.	4.2	45
15	The Assessment of Overall Hangover Severity. Journal of Clinical Medicine, 2020, 9, 786.	2.4	45
16	Striatal and thalamic GABA level concentrations play differential roles for the modulation of response selection processes by proprioceptive information. NeuroImage, 2015, 120, 36-42.	4.2	44
17	Single-subject prediction of response inhibition behavior by event-related potentials. Journal of Neurophysiology, 2016, 115, 1252-1262.	1.8	43
18	Differential Effects of Motor Efference Copies and Proprioceptive Information on Response Evaluation Processes. PLoS ONE, 2013, 8, e62335.	2.5	42

#	Article	IF	CITATIONS
19	The system neurophysiological basis of backward inhibition. Brain Structure and Function, 2016, 221, 4575-4587.	2.3	42
20	Dissociable electrophysiological subprocesses during response inhibition are differentially modulated by dopamine D1 and D2 receptors. European Neuropsychopharmacology, 2016, 26, 1029-1036.	0.7	36
21	Advantages and Limitations of Naturalistic Study Designs and Their Implementation in Alcohol Hangover Research. Journal of Clinical Medicine, 2019, 8, 2160.	2.4	35
22	Highâ€dose alcohol intoxication differentially modulates cognitive subprocesses involved in response inhibition. Addiction Biology, 2016, 21, 136-145.	2.6	34
23	Effects of binge drinking on action cascading processes: an EEG study. Archives of Toxicology, 2014, 88, 475-488.	4.2	33
24	Subliminally and consciously induced cognitive conflicts interact at several processing levels. Cortex, 2016, 85, 75-89.	2.4	31
25	Catecholaminergic Modulation of Conflict Control Depends on the Source of Conflicts. International Journal of Neuropsychopharmacology, 2018, 21, 901-909.	2.1	31
26	Humans with latent toxoplasmosis display altered reward modulation of cognitive control. Scientific Reports, 2017, 7, 10170.	3.3	30
27	Effects of highâ€dose ethanol intoxication and hangover on cognitive flexibility. Addiction Biology, 2018, 23, 503-514.	2.6	30
28	The neurophysiological basis of reward effects on backward inhibition processes. NeuroImage, 2016, 142, 163-171.	4.2	29
29	The system neurophysiological basis of nonâ€adaptive cognitive control: Inhibition of implicit learning mediated by right prefrontal regions. Human Brain Mapping, 2016, 37, 4511-4522.	3.6	27
30	Altered perceptual binding in Gilles de la Tourette syndrome. Cortex, 2016, 83, 160-166.	2.4	27
31	Effects of l-Tyrosine on working memory and inhibitory control are determined by DRD2 genotypes: A randomized controlled trial. Cortex, 2016, 82, 217-224.	2.4	27
32	On the relevance of the alpha frequency oscillation's small-world network architecture for cognitive flexibility. Scientific Reports, 2017, 7, 13910.	3.3	27
33	Machine learning provides novel neurophysiological features that predict performance to inhibit automated responses. Scientific Reports, 2018, 8, 16235.	3.3	27
34	Sensitivity to Experiencing Alcohol Hangovers: Reconsideration of the 0.11% Blood Alcohol Concentration (BAC) Threshold for Having a Hangover. Journal of Clinical Medicine, 2020, 9, 179.	2.4	27
35	Methamphetamine-associated difficulties in cognitive control allocation may normalize after prolonged abstinence. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 88, 41-52.	4.8	26
36	The importance of sensory integration processes for action cascading. Scientific Reports, 2015, 5, 9485.	3.3	25

#	Article	IF	CITATIONS
37	How minimal variations in neuronal cytoskeletal integrity modulate cognitive control. NeuroImage, 2019, 185, 129-139.	4.2	25
38	Opposite effects of binge drinking on consciously vs. subliminally induced cognitive conflicts. NeuroImage, 2017, 162, 117-126.	4.2	24
39	Barking up the Wrong Tree: Why and How We May Need to Revise Alcohol Addiction Therapy. Frontiers in Psychology, 2017, 8, 884.	2.1	24
40	Catecholaminergic effects on inhibitory control depend on the interplay of prior task experience and working memory demands. Journal of Psychopharmacology, 2019, 33, 678-687.	4.0	23
41	Effects of Alcohol Hangover on Cognitive Performance: Findings from a Field/Internet Mixed Methodology Study. Journal of Clinical Medicine, 2019, 8, 440.	2.4	23
42	Paradox effects of binge drinking on response inhibition processes depending on mental workload. Archives of Toxicology, 2016, 90, 1429-1436.	4.2	20
43	Neurophysiological mechanisms of circadian cognitive control in RLS patients - an EEG source localization study. Neurolmage: Clinical, 2017, 15, 644-652.	2.7	20
44	A novel cognitive-neurophysiological state biomarker in premanifest Huntington's disease validated on longitudinal data. Scientific Reports, 2013, 3, 1797.	3.3	19
45	Effects of binge drinking and hangover on response selection sub-processes-a study using EEG and drift diffusion modeling. Addiction Biology, 2017, 22, 1355-1365.	2.6	19
46	Evidence for enhanced multi-component behaviour in Tourette syndrome – an EEG study. Scientific Reports, 2017, 7, 7722.	3.3	19
47	The Impact of Mood and Subjective Intoxication on Hangover Severity. Journal of Clinical Medicine, 2020, 9, 2462.	2.4	19
48	Differential effects of ADORA2A gene variations in pre-attentive visual sensory memory subprocesses. European Neuropsychopharmacology, 2012, 22, 555-561.	0.7	17
49	How highâ€dose alcohol intoxication affects the interplay of automatic and controlled processes. Addiction Biology, 2020, 25, e12700.	2.6	17
50	Relationship between Alcohol Hangover and Physical Endurance Performance: Walking the Samaria Gorge. Journal of Clinical Medicine, 2020, 9, 114.	2.4	17
51	Different strategies, but indifferent strategy adaptation during action cascading. Scientific Reports, 2015, 5, 9992.	3.3	16
52	Conscientiousness increases efficiency of multicomponent behavior. Scientific Reports, 2015, 5, 15731.	3.3	16
53	Lateralization of spatial information processing in response monitoring. Frontiers in Psychology, 2014, 5, 22.	2.1	15
54	On the relevance of the NPY2-receptor variation for modes of action cascading processes. NeuroImage, 2014, 102, 558-564.	4.2	15

#	Article	IF	CITATIONS
55	Evidence for a neural dual-process account for adverse effects of cognitive control. Brain Structure and Function, 2018, 223, 3347-3363.	2.3	15
56	Evidence for a causal role of superior frontal cortex theta oscillations during the processing of joint subliminal and conscious conflicts. Cortex, 2020, 132, 15-28.	2.4	13
57	Acute Alcohol Effects on Response Inhibition Depend on Response Automatization, but not on GABA or Glutamate Levels in the ACC and Striatum. Journal of Clinical Medicine, 2020, 9, 481.	2.4	13
58	Alcohol Hangover Slightly Impairs Response Selection but not Response Inhibition. Journal of Clinical Medicine, 2019, 8, 1317.	2.4	12
59	Neuronal networks underlying the conjoint modulation of response selection by subliminal and consciously induced cognitive conflicts. Brain Structure and Function, 2019, 224, 1697-1709.	2.3	12
60	Detrimental effects of a high-dose alcohol intoxication on sequential cognitive flexibility are attenuated by practice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 89, 97-108.	4.8	12
61	Apolipoprotein $\hat{I}\mu4$ is associated with better cognitive control allocation in healthy young adults. NeuroImage, 2019, 185, 274-285.	4.2	12
62	Acute alcohol intoxication modulates the temporal dynamics of resting electroencephalography networks. Addiction Biology, 2021, 26, e13034.	2.6	12
63	NPY2-receptor variation modulates iconic memory processes. European Neuropsychopharmacology, 2014, 24, 1298-1302.	0.7	11
64	Age-related differences in task goal processing strategies during action cascading. Brain Structure and Function, 2016, 221, 2767-2775.	2.3	11
65	Complex sensorimotor transformation processes required for response selection are facilitated by the striatum. Neurolmage, 2015, 123, 33-41.	4.2	10
66	Blocking effects in non-conditioned goal-directed behaviour. Brain Structure and Function, 2017, 222, 2807-2818.	2.3	10
67	The Presynaptic Regulation of Dopamine and Norepinephrine Synthesis Has Dissociable Effects on Different Kinds of Cognitive Conflicts. Molecular Neurobiology, 2019, 56, 8087-8100.	4.0	10
68	Binge drinking and the differential influence of ethanol on cognitive control subprocesses: a novel field of neurotoxicology. Archives of Toxicology, 2014, 88, 9-10.	4.2	9
69	Evidence for divergent effects of neurodegeneration in Huntington's disease on attentional selection and neural plasticity: implications for excitotoxicity. Brain Structure and Function, 2015, 220, 1437-1447.	2.3	9
70	Sensory processes modulate differences in multiâ€component behavior and cognitive control between childhood and adulthood. Human Brain Mapping, 2017, 38, 4933-4945.	3.6	9
71	Self-Regulatory Capacities Are Depleted in a Domain-Specific Manner. Frontiers in Systems Neuroscience, 2017, 11, 70.	2.5	9
72	RLS patients show better nocturnal performance in the Simon task due to diminished visuo-motor priming. Clinical Neurophysiology, 2018, 129, 112-121.	1.5	9

#	Article	IF	CITATIONS
73	Alcohol Hangover Increases Conflict Load via Faster Processing of Subliminal Information. Frontiers in Human Neuroscience, 2018, 12, 316.	2.0	9
74	Dopamine D1, but not D2, signaling protects mental representations from distracting bottom-up influences. NeuroImage, 2020, 204, 116243.	4.2	9
75	Highâ€dose ethanol intoxication decreases 1/f neural noise or scaleâ€free neural activity in the resting state. Addiction Biology, 2020, 25, e12818.	2.6	9
76	On the functional role of striatal and anterior cingulate GABA + in stimulusâ€response binding. Human Brain Mapping, 2021, 42, 1863-1878.	3.6	9
77	On the effects of tyrosine supplementation on interference control in a randomized, double-blind placebo-control trial. European Neuropsychopharmacology, 2018, 28, 933-944.	0.7	8
78	The Role of DRD1 and DRD2 Receptors for Response Selection Under Varying Complexity Levels: Implications for Metacontrol Processes. International Journal of Neuropsychopharmacology, 2019, 22, 747-753.	2.1	8
79	Thalamic GABA may modulate cognitive control in restless legs syndrome. Neuroscience Letters, 2019, 712, 134494.	2.1	8
80	Effects of Rapid Recovery on Alcohol Hangover Severity: A Double-Blind, Placebo-Controlled, Randomized, Balanced Crossover Trial. Journal of Clinical Medicine, 2020, 9, 2175.	2.4	7
81	Prevalence of Hangover Resistance According to Two Methods for Calculating Estimated Blood Alcohol Concentration (eBAC). Journal of Clinical Medicine, 2020, 9, 2823.	2.4	7
82	A role of the norepinephrine system or effort in the interplay of different facets of inhibitory control. Neuropsychologia, 2022, 166, 108143.	1.6	7
83	Conditional generative adversarial networks applied to EEG data can inform about the inter-relation of antagonistic behaviors on a neural level. Communications Biology, 2022, 5, 148.	4.4	7
84	CHRM2 Genotype Affects Inhibitory Control Mechanisms During Cognitive Flexibility. Molecular Neurobiology, 2019, 56, 6134-6141.	4.0	6
85	Reversal of alcoholâ€induced effects on response control due to changes in proprioceptive information processing. Addiction Biology, 2017, 22, 246-256.	2.6	5
86	On the Neurophysiological Mechanisms Underlying the Adaptability to Varying Cognitive Control Demands. Frontiers in Human Neuroscience, 2018, 12, 411.	2.0	5
87	The Intensity of Early Attentional Processing, but Not Conflict Monitoring, Determines the Size of Subliminal Response Conflicts. Frontiers in Human Neuroscience, 2019, 13, 53.	2.0	5
88	Dissociating direct and indirect effects: a theoretical framework of how latent toxoplasmosis affects cognitive profile across the lifespan. Neurobiology of Aging, 2021, 102, 119-128.	3.1	5
89	Neurobiological mechanisms of control in alcohol use disorder – Moving towards mechanism-based non-invasive brain stimulation treatments. Neuroscience and Biobehavioral Reviews, 2022, 133, 104508.	6.1	5
90	Associations between Mental Resilience, Mood, Coping, Personality, and Hangover Severity. Journal of Clinical Medicine, 2022, 11, 2240.	2.4	5

#	Article	IF	CITATIONS
91	Effects of copper toxicity on response inhibition processes: a study in Wilson's disease. Archives of Toxicology, 2016, 90, 1623-1630.	4.2	4
92	Methamphetamine Users Show No Behavioral Deficits in Response Selection After Protracted Abstinence. Frontiers in Psychiatry, 2019, 10, 823.	2.6	4
93	The Alcohol Hangover Research Group: Ten Years of Progress in Research on the Causes, Consequences, and Treatment of the Alcohol Hangover. Journal of Clinical Medicine, 2020, 9, 3670.	2.4	4
94	Alcohol Hangover Differentially Modulates the Processing of Relevant and Irrelevant Information. Journal of Clinical Medicine, 2020, 9, 778.	2.4	4
95	Automatic aspects of response selection remain unchanged during highâ€dose alcohol intoxication. Addiction Biology, 2021, 26, e12852.	2.6	4
96	Anodal tDCS modulates specific processing codes during conflict monitoring associated with superior and middle frontal cortices. Brain Structure and Function, 2021, 226, 1335-1351.	2.3	4
97	On the necessity of translational cognitive-neurotoxicological research in methamphetamine abuse and addiction. Archives of Toxicology, 2017, 91, 2707-2709.	4.2	2
98	Young frequent binge drinkers show no behavioral deficits in inhibitory control and cognitive flexibility. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 93, 93-101.	4.8	2
99	Alcohol Hangover Does Not Alter the Application of Model-Based and Model-Free Learning Strategies. Journal of Clinical Medicine, 2020, 9, 1453.	2.4	2
100	Alcohol intoxication, but not hangover, differentially impairs learning and automatization of complex motor response sequences. Scientific Reports, 2021, 11, 12539.	3.3	2
101	Cognitive profile in Restless Legs Syndrome: A signal-to-noise ratio account. Current Research in Neurobiology, 2021, 2, 100021.	2.3	1
102	An Oppositional Tolerance Account for Potential Cognitive Deficits Caused by the Discontinuation of Antidepressant Drugs. Pharmacopsychiatry, 2021, 54, 252-260.	3.3	0
103	How low working memory demands and reduced anticipatory attentional gating contribute to impaired inhibition during acute alcohol intoxication. Scientific Reports, 2022, 12, 2892.	3.3	О