Sam Thiagalingam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/101150/publications.pdf

Version: 2024-02-01

77 papers

8,018 citations

147566 31 h-index 233125 45 g-index

84 all docs 84 docs citations

times ranked

84

8616 citing authors

#	Article	IF	CITATIONS
1	Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature, 1993, 362, 857-860.	13.7	1,407
2	14-3-3 \ddot{l} Is a p53-Regulated Inhibitor of G2/M Progression. Molecular Cell, 1997, 1, 3-11.	4. 5	1,153
3	Histone Deacetylases: Unique Players in Shaping the Epigenetic Histone Code. Annals of the New York Academy of Sciences, 2003, 983, 84-100.	1.8	635
4	Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers. Nature Genetics, 1996, 13, 343-346.	9.4	580
5	Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Human Molecular Genetics, 2006, 15, 3132-3145.	1.4	433
6	Sequence-specific transcriptional activation is essential for growth suppression by p53 Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 1998-2002.	3.3	368
7	Mad-related genes in the human. Nature Genetics, 1996, 13, 347-349.	9.4	359
8	Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: A preliminary report. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2005, 134B, 60-66.	1.1	347
9	Mechanisms underlying losses of heterozygosity in human colorectal cancers. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 2698-2702.	3.3	194
10	p53 tagged sites from human genomic DNA. Human Molecular Genetics, 1994, 3, 1537-1542.	1.4	174
11	Epigenetic dysregulation of HTR2A in the brain of patients with schizophrenia and bipolar disorder. Schizophrenia Research, 2011, 129, 183-190.	1.1	170
12	Smad4 Inactivation Promotes Malignancy and Drug Resistance of Colon Cancer. Cancer Research, 2011, 71, 998-1008.	0.4	170
13	Smad Signaling Is Required to Maintain Epigenetic Silencing during Breast Cancer Progression. Cancer Research, 2010, 70, 968-978.	0.4	162
14	DNA hypomethylation of MB-COMT promoter in the DNA derived from saliva in schizophrenia and bipolar disorder. Journal of Psychiatric Research, 2011, 45, 1432-1438.	1.5	155
15	Differential DNA Hypermethylation of Critical Genes Mediates the Stage-Specific Tobacco Smoke-Induced Neoplastic Progression of Lung Cancer. Clinical Cancer Research, 2005, 11, 2466-2470.	3.2	140
16	Genetics and Epigenetics in Major Psychiatric Disorders. Molecular Diagnosis and Therapy, 2005, 5, 149-160.	3.3	134
17	Hypomethylation of the serotonin receptor typeâ€2A Gene (HTR2A) at T102C polymorphic site in DNA derived from the saliva of patients with schizophrenia and bipolar disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2011, 156, 536-545.	1.1	104
18	DNA hypermethylation of serotonin transporter gene promoter in drug na \tilde{A} -ve patients with schizophrenia. Schizophrenia Research, 2014, 152, 373-380.	1.1	93

#	Article	IF	CITATIONS
19	Loss of heterozygosity as a predictor to map tumor suppressor genes in cancer: molecular basis of its occurrence. Current Opinion in Oncology, 2002, 14, 65-72.	1.1	89
20	ATPase activity of the UvrA and UvrAB protein complexes of the Escherichia coli UvrABC endonuclease. Nucleic Acids Research, 1989, 17, 4145-4159.	6.5	78
21	Targeting IL13Ralpha2 activates STAT6-TP63 pathway to suppress breast cancer lung metastasis. Breast Cancer Research, 2015, 17, 98.	2.2	76
22	SDPR functions as a metastasis suppressor in breast cancer by promoting apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 638-643.	3.3	66
23	Antipsychotic drugs attenuate aberrant DNA methylation of <i>DTNBP1</i> (dysbindin) promoter in saliva and postâ€mortem brain of patients with schizophrenia and Psychotic bipolar disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2015, 168, 687-696.	1.1	64
24	Epigenetic Alterations of the Dopaminergic System in Major Psychiatric Disorders. Methods in Molecular Biology, 2008, 448, 187-212.	0.4	62
25	Loss of Heterozygosity Patterns Provide Fingerprints for Genetic Heterogeneity in Multistep Cancer Progression of Tobacco Smoke–Induced Non–Small Cell Lung Cancer. Cancer Research, 2005, 65, 1664-1669.	0.4	59
26	An update on the epigenetics of psychotic diseases and autism. Epigenomics, 2015, 7, 427-449.	1.0	57
27	Tumor Cell-Derived Periostin Regulates Cytokines That Maintain Breast Cancer Stem Cells. Molecular Cancer Research, 2016, 14, 103-113.	1.5	46
28	Epigenetic and pharmacoepigenomic studies of major psychoses and potentials for therapeutics. Pharmacogenomics, 2008, 9, 1809-1823.	0.6	44
29	Elucidation of Epigenetic Inactivation of SMAD8 in Cancer Using Targeted Expressed Gene Display. Cancer Research, 2004, 64, 1639-1646.	0.4	36
30	Aberrant activation of \hat{I}^3 -catenin promotes genomic instability and oncogenic effects during tumor progression. Cancer Biology and Therapy, 2007, 6, 1638-1643.	1.5	33
31	Activin A Signaling Regulates $IL13R\hat{l}\pm2$ Expression to Promote Breast Cancer Metastasis. Frontiers in Oncology, 2019, 9, 32.	1.3	33
32	Integrin Signaling in Mammary Epithelial Cells and Breast Cancer. ISRN Oncology, 2012, 2012, 1-9.	2.1	31
33	Aberrant transcriptomes and DNA methylomes define pathways that drive pathogenesis and loss of brain laterality/asymmetry in schizophrenia and bipolar disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2019, 180, 138-149.	1.1	31
34	A Cascade of Modules of a Network Defines Cancer Progression. Cancer Research, 2006, 66, 7379-7385.	0.4	27
35	PAK1, a gene that can regulate p53 activity in yeast Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 6062-6066.	3. 3	26
36	Epigenetic memory in development and disease: Unraveling the mechanism. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1873, 188349.	3.3	25

#	Article	IF	Citations
37	MicroRNA-4417 is a tumor suppressor and prognostic biomarker for triple-negative breast cancer. Cancer Biology and Therapy, 2019, 20, 1113-1120.	1.5	19
38	Methamphetamineâ€induced psychosis is associated with DNA hypomethylation and increased expression of <i>AKT1</i> and key dopaminergic genes. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2016, 171, 1180-1189.	1.1	18
39	Can the schizophrenia epigenome provide clues for the molecular basis of pathogenesis?. Epigenomics, 2011, 3, 679-683.	1.0	17
40	Targeting RICTOR Sensitizes SMAD4-Negative Colon Cancer to Irinotecan. Molecular Cancer Research, 2020, 18, 414-423.	1.5	12
41	hBub1 deficiency triggers a novel p53 mediated early apoptotic checkpoint pathway in mitotic spindle damaged cells. Cancer Biology and Therapy, 2009, 8, 627-635.	1.5	11
42	hBub1 negatively regulates p53 mediated early cell death upon mitotic checkpoint activation. Cancer Biology and Therapy, 2009, 8, 636-644.	1.5	11
43	Homeosis and polyposis: A tale from the mouse. BioEssays, 1997, 19, 551-555.	1.2	7
44	Pathogenic Histone Modifications in Schizophrenia are Targets for Therapy., 2014,, 241-251.		5
45	Cataloging recent advances in epigenetic alterations in major mental disorders and autism. Epigenomics, 2021, 13, 1231-1245.	1.0	5
46	Epigenetic Modulation of Reelin Function in Schizophrenia and Bipolar Disorder., 2008,, 365-384.		4
47	Molecular Detection of Smad2/Smad4 Alterations in Colorectal Tumors. , 2001, 50, 149-165.		3
48	Molecular links between inflammation and cancer., 0,, 273-281.		3
49	Regulation and dysregulation of protein synthesis in cancer cells. , 0, , 70-92.		1
50	TGF \hat{I}^2 and BMP signaling in cancer. , 2015, , 204-221.		1
51	Pathogenic histone modifications in schizophrenia are targets for therapy. , 2021, , 309-319.		1
52	The Cancer Epigenome. , 2008, , 97-113.		1
53	MicroRNA epigenetic systems and cancer. , 0, , 134-153.		1
54	Dietary and environmental influences on the genomic and epigenomic codes in cancer. , 2015, , 154-168.		1

#	Article	IF	CITATIONS
55	Cancer metastasis., 0,, 282-294.		1
56	Cancer metabolism., 0,, 295-308.		1
57	The role of growth factor-induced changes in cell fate in prostate cancer progression. , 0, , 361-376.		1
58	Events at DNA replication origins and genome stability., 0,, 35-55.		0
59	Role of network biology and network medicine in early detection of cancer. , 0, , 457-463.		0
60	Application of bioinformatics to analyze the expression of tissue-specific and housekeeping genes in cancer., 0,, 20-34.		0
61	Tumor microenvironment: blood vascular system in cancer metastasis. , 0, , 309-322.		0
62	PI3K pathway in cancer. , 0, , 193-203.		0
63	The Wnt signaling network in cancer. , 0, , 222-255.		0
64	Genomic instability and carcinogenesis., 0,, 93-112.		0
65	DNA Methylation Profiles as Prognostic Markers for Cancer. , 2008, , 333-346.		0
66	Systems biology of cancer progression. , 0, , 1-6.		0
67	Lessons from cancer genome sequencing. , 0, , 7-19.		0
68	Systems biology approaches bring new insights in the understanding of global gene regulatory mechanisms and their deregulation in cancer., 0,, 56-69.		0
69	Epigenomic code. , 0, , 113-133.		0
70	RAS signaling networks. , 0, , 183-192.		0
71	Apoptotic pathways and cancer. , 0, , 256-272.		0
72	Biology of human stomach cancer. , 0, , 386-408.		0

#	Article	IF	CITATIONS
73	Deregulated signaling networks in lung cancer. , 0, , 421-442.		O
74	Modular signaling in hematopoietic malignancies., 0,, 443-456.		0
75	Systems biology in cancer biomarkers for early detection, diagnosis, and prognosis., 0,, 464-472.		O
76	Prognosis of cancer., 0,, 473-498.		0
77	Cancer pharmacogenomics: challenges, promises, and its application to cancer drug discovery. , 0, , 499-517.		O