Qingshi Tu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1011335/qingshi-tu-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

27
papers

12
g-index

31
g-index

34
ext. papers

7.4
ext. citations

7.4
ext. citations

27
papers

12
papers
papers

12
papers
papers

13
papers

14.67
papers
papers

14.67
papers
papers
papers

15
papers

16
papers

17
papers

17
papers

17
papers

18
papers

18
papers

19
papers

19
papers

19
papers

10
papers

#	Paper	IF	Citations
27	Improving litterfall production prediction in China under variable environmental conditions using machine learning algorithms <i>Journal of Environmental Management</i> , 2022 , 306, 114515	7.9	1
26	Rapid, high-yield production of lignin-containing cellulose nanocrystals using recyclable oxalic acid dihydrate. <i>Industrial Crops and Products</i> , 2021 , 173, 114148	5.9	6
25	A comprehensive set of global scenarios of housing, mobility, and material efficiency for material cycles and energy systems modeling. <i>Journal of Industrial Ecology</i> , 2021 , 25, 305-320	7.2	7
24	Linking service provision to material cycles: A new framework for studying the resource efficiencyElimate change (RECC) nexus. <i>Journal of Industrial Ecology</i> , 2021 , 25, 260-273	7.2	11
23	Material efficiency and climate change mitigation of passenger vehicles. <i>Journal of Industrial Ecology</i> , 2021 , 25, 494-510	7.2	11
22	Electrocatalysis for Chemical and Fuel Production: Investigating Climate Change Mitigation Potential and Economic Feasibility. <i>Environmental Science & Economic Resease Programmental Science Programmental Science Programmental Programme</i>	10.3	12
21	Global scenarios of resource and emission savings from material efficiency in residential buildings and cars. <i>Nature Communications</i> , 2021 , 12, 5097	17.4	22
20	A Greener Alternative Titration Method for Measuring Acid Values of Fats, Oils, and Grease. <i>JAOCS, Journal of the American Oil Chemistsr Society</i> , 2019 , 96, 1083-1091	1.8	5
19	Material efficiency strategies to reducing greenhouse gas emissions associated with buildings, vehicles, and electronics review. <i>Environmental Research Letters</i> , 2019 , 14, 043004	6.2	115
18	Integrated hybrid life cycle assessment and contribution analysis for CO2 emission and energy consumption of a concentrated solar power plant in China. <i>Energy</i> , 2019 , 174, 310-322	7.9	17
17	Life Cycle Assessment of Biodiesel 2019 , 175-200		
16	Comparing the Environmental Impacts of Meatless and Meat-Containing Meals in the United States. <i>Sustainability</i> , 2019 , 11, 6235	3.6	10
15	The Green ChemisTREE: 20 years after taking root with the 12 principles. <i>Green Chemistry</i> , 2018 , 20, 19	29196	51313
14	Harmonized algal biofuel life cycle assessment studies enable direct process train comparison. <i>Applied Energy</i> , 2018 , 224, 494-509	10.7	18
13	Thermo-Economic Analysis and Optimization of Adiabatic Compressed Air Energy Storage (A-CAES) System Coupled with a Kalina Cycle. <i>Energy Technology</i> , 2018 , 6, 1011-1025	3.5	10
12	Direct transesterification of spent coffee grounds for biodiesel production. <i>Fuel</i> , 2017 , 199, 157-161	7.1	85
11	Glycerolysis with crude glycerin as an alternative pretreatment for biodiesel production from grease trap waste: Parametric study and energy analysis. <i>Journal of Cleaner Production</i> , 2017 , 162, 504	-5 ^{19.3}	28

LIST OF PUBLICATIONS

10	Meta-analysis and Harmonization of Life Cycle Assessment Studies for Algae Biofuels. <i>Environmental Science & Environmental Sc</i>	10.3	31
9	Simultaneous Extraction, Fractionation, and Enrichment of Microalgal Triacylglyerides by Exploiting the Tunability of Neat Supercritical Carbon Dioxide. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 6222-6230	8.3	12
8	A solvent-free approach to extract the lipid fraction from sewer grease for biodiesel production. <i>Waste Management</i> , 2016 , 54, 126-30	8.6	11
7	Monte Carlo analysis of life cycle energy consumption and greenhouse gas (GHG) emission for biodiesel production from trap grease. <i>Journal of Cleaner Production</i> , 2016 , 112, 2674-2683	10.3	37
6	Water consumption estimates of the biodiesel process in the US. <i>Clean Technologies and Environmental Policy</i> , 2016 , 18, 507-516	4.3	5
5	Review of Water Consumption and Water Conservation Technologies in the Algal Biofuel Process. <i>Water Environment Research</i> , 2016 , 88, 21-8	2.8	10
4	Converting campus waste into renewable energy - a case study for the University of Cincinnati. <i>Waste Management</i> , 2015 , 39, 258-65	8.6	17
3	Esterification pretreatment of free fatty acid in biodiesel production, from laboratory to industry. <i>Fuel Processing Technology</i> , 2014 , 125, 106-113	7.2	165
2	The gutter oil issue in China. <i>Proceedings of Institution of Civil Engineers: Waste and Resource Management</i> , 2013 , 166, 142-149	0.5	1
1	Isolation of lignin-containing cellulose nanocrystals: life-cycle environmental impacts and opportunities for improvement. <i>Biofuels, Bioproducts and Biorefining</i> ,	5.3	7