
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1011025/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<scp>ENIGMA</scp> brain injury: Framework, challenges, and opportunities. Human Brain Mapping, 2022, 43, 149-166.	3.6	33
2	ENIGMAâ€ÐTI: Translating reproducible white matter deficits into personalized vulnerability metrics in crossâ€diagnostic psychiatric research. Human Brain Mapping, 2022, 43, 194-206.	3.6	52
3	Fine Particulate Air Pollution, Early Life Stress, and Their Interactive Effects on Adolescent Structural Brain Development: A Longitudinal Tensor-Based Morphometry Study. Cerebral Cortex, 2022, 32, 2156-2169.	2.9	14
4	Advanced brain age in deployment-related traumatic brain injury: A LIMBIC-CENC neuroimaging study. Brain Injury, 2022, 36, 662-672.	1.2	6
5	The Presence of the Temporal Horn Exacerbates the Vulnerability of Hippocampus During Head Impacts. Frontiers in Bioengineering and Biotechnology, 2022, 10, 754344.	4.1	10
6	Remodeling of the Cortical Structural Connectome in Posttraumatic Stress Disorder: Results From the ENIGMA-PGC Posttraumatic Stress Disorder Consortium. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2022, 7, 935-948.	1.5	2
7	<scp>Ageâ€dependent</scp> white matter disruptions after military traumatic brain injury: Multivariate analysis results from <scp>ENIGMA</scp> brain injury. Human Brain Mapping, 2022, 43, 2653-2667.	3.6	6
8	Altered white matter microstructural organization in posttraumatic stress disorder across 3047 adults: results from the PGC-ENIGMA PTSD consortium. Molecular Psychiatry, 2021, 26, 4315-4330.	7.9	69
9	Cortical volume abnormalities in posttraumatic stress disorder: an ENIGMA-psychiatric genomics consortium PTSD workgroup mega-analysis. Molecular Psychiatry, 2021, 26, 4331-4343.	7.9	52
10	The ENIGMA sports injury working group:– an international collaboration to further our understanding of sport-related brain injury. Brain Imaging and Behavior, 2021, 15, 576-584.	2.1	8
11	Challenges and opportunities for neuroimaging in young patients with traumatic brain injury: a coordinated effort towards advancing discovery from the ENIGMA pediatric moderate/severe TBI group. Brain Imaging and Behavior, 2021, 15, 555-575.	2.1	8
12	The clinical utility of proton magnetic resonance spectroscopy in traumatic brain injury: recommendations from the ENIGMA MRS working group. Brain Imaging and Behavior, 2021, 15, 504-525.	2.1	32
13	Toward a global and reproducible science for brain imaging in neurotrauma: the ENIGMA adult moderate/severe traumatic brain injury working group. Brain Imaging and Behavior, 2021, 15, 526-554.	2.1	16
14	A global collaboration to study intimate partner violence-related head trauma: The ENIGMA consortium IPV working group. Brain Imaging and Behavior, 2021, 15, 475-503.	2.1	21
15	Coordinating Global Multi-Site Studies of Military-Relevant Traumatic Brain Injury: Opportunities, Challenges, and Harmonization Guidelines. Brain Imaging and Behavior, 2021, 15, 585-613.	2.1	9
16	Prenatal and postnatal depressive symptoms, infant white matter, and toddler behavioral problems. Journal of Affective Disorders, 2021, 282, 465-471.	4.1	14
17	White Matter Disruption in Pediatric Traumatic Brain Injury. Neurology, 2021, 97, .	1.1	14
18	The ENIGMA Brain Injury working group: approach, challenges, and potential benefits. Brain Imaging and Behavior, 2021, 15, 465-474.	2.1	12

#	Article	IF	CITATIONS
19	Association between white matter organization and cognitive performance in athletes with a history of sport-related concussion. Journal of Clinical and Experimental Neuropsychology, 2021, 43, 704-715.	1.3	5
20	Diffusion Tensor Imaging Correlates of Resilience Following Adolescent Traumatic Brain Injury. Cognitive and Behavioral Neurology, 2021, 34, 259-274.	0.9	4
21	Trauma and posttraumatic stress disorder modulate polygenic predictors of hippocampal and amygdala volume. Translational Psychiatry, 2021, 11, 637.	4.8	4
22	Functional Brain Hyperactivations Are Linked to an Electrophysiological Measure of Slow Interhemispheric Transfer Time after Pediatric Moderate/Severe Traumatic Brain Injury. Journal of Neurotrauma, 2020, 37, 397-409.	3.4	7
23	Longitudinal alteration of cortical thickness and volume in high-impact sports. NeuroImage, 2020, 217, 116864.	4.2	17
24	Multisite ENIGMA and PGC Consortium Findings From Multimodal Neuroimaging of Posttraumatic Stress Disorder (PTSD). Biological Psychiatry, 2020, 87, S25-S26.	1.3	0
25	Sexâ€Related Differences in the Effects of Sportsâ€Related Concussion: A Review. Journal of Neuroimaging, 2020, 30, 387-409.	2.0	48
26	ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries. Translational Psychiatry, 2020, 10, 100.	4.8	365
27	Cross-sectional and longitudinal associations of family income-to-needs ratio with cortical and subcortical brain volume in adolescent boys and girls. Developmental Cognitive Neuroscience, 2020, 44, 100796.	4.0	21
28	Relation between Isometric Neck Strength and White Matter Organization in Collegiate Athletes. Neurotrauma Reports, 2020, 1, 232-240.	1.4	4
29	Stressful Life Events, ADHD Symptoms, and Brain Structure in Early Adolescence. Journal of Abnormal Child Psychology, 2019, 47, 421-432.	3.5	34
30	Identifying Configurational Abnormalities in Alzheimer'S Disease Progression Using Multi-View Structure Connectome. , 2019, , .		0
31	Irritability and brain volume in adolescents: cross-sectional and longitudinal associations. Social Cognitive and Affective Neuroscience, 2019, 14, 687-698.	3.0	20
32	108. Hippocampal Subfield Volumes Relate to Unique Phenotypes of PTSD: International Analysis by the PGC-ENIGMA PTSD Working Group. Biological Psychiatry, 2019, 85, S45.	1.3	1
33	Multi-Shell Diffusion MRI Measures of Brain Aging: A Preliminary Comparison From ADNI3. , 2019, , .		3
34	Associations Between Maternal Depression and Infant Fronto-Limbic Connectivity. , 2019, , .		5
35	Adaptive Identification of Cortical and Subcortical Imaging Markers of Early Life Stress and Posttraumatic Stress Disorder. Journal of Neuroimaging, 2019, 29, 335-343.	2.0	14
36	Neuroimaging Phenotypes Implicated For GWAS of PTSD Through The PGC And ENIGMA Worldwide Consortia. European Neuropsychopharmacology, 2019, 29, S750-S751.	0.7	2

#	Article	IF	CITATIONS
37	Bridging the gap: Mechanisms of plasticity and repair after pediatric TBI. Experimental Neurology, 2019, 318, 78-91.	4.1	17
38	111. Lower White Matter Integrity in PTSD: Results From the PGC-Enigma PTSD Working Group. Biological Psychiatry, 2019, 85, S46.	1.3	0
39	Longitudinal Neuroimaging in Pediatric Traumatic Brain Injury: Current State and Consideration of Factors That Influence Recovery. Frontiers in Neurology, 2019, 10, 1296.	2.4	34
40	Genetics of brain networks and connectivity. , 2019, , 155-179.		0
41	Neuroimaging of the Injured Pediatric Brain: Methods and New Lessons. Neuroscientist, 2018, 24, 652-670.	3.5	32
42	Whole Brain Magnetic Resonance Spectroscopic Determinants of Functional Outcomes in Pediatric Moderate/Severe Traumatic Brain Injury. Journal of Neurotrauma, 2018, 35, 1637-1645.	3.4	20
43	Smaller Hippocampal Volume in Posttraumatic Stress Disorder: A Multisite ENIGMA-PGC Study: Subcortical Volumetry Results From Posttraumatic Stress Disorder Consortia. Biological Psychiatry, 2018, 83, 244-253.	1.3	335
44	Preterm birth leads to hyper-reactive cognitive control processing and poor white matter organization in adulthood. NeuroImage, 2018, 167, 419-428.	4.2	25
45	Smaller hippocampal CA1 subfield volume in posttraumatic stress disorder. Depression and Anxiety, 2018, 35, 1018-1029.	4.1	58
46	ENIGMA military brain injury: A coordinated meta-analysis of diffusion MRI from multiple cohorts. , 2018, 2018, 1386-1389.		13
47	Magnetic resonance spectroscopy of fiber tracts in children with traumatic brain injury: A combined MRS – Diffusion MRI study. Human Brain Mapping, 2018, 39, 3759-3768.	3.6	19
48	Network-based approaches to examining stress in the adolescent brain. Neurobiology of Stress, 2018, 8, 147-157.	4.0	25
49	ENIGMA pediatric msTBI: preliminary results from meta-analysis of diffusion MRI. , 2018, , .		1
50	ENIGMA and the individual: Predicting factors that affect the brain in 35 countries worldwide. NeuroImage, 2017, 145, 389-408.	4.2	173
51	Variable clustering reveals associations between subcortical brain volume and cognitive changes in pediatric traumatic brain injury. , 2017, , .		2
52	Mapping age effects along fiber tracts in young adults. , 2017, 2017, 101-104.		1
53	251. Diverging Cognitive Trajectories in Pediatric Moderate to Severe Traumatic Brain Injury. Biological Psychiatry, 2017, 81, S103.	1.3	0
54	Diverging white matter trajectories in children after traumatic brain injury. Neurology, 2017, 88, 1392-1399.	1.1	33

#	Article	IF	CITATIONS
55	Diffusion MRI in pediatric brain injury. Child's Nervous System, 2017, 33, 1683-1692.	1.1	32
56	87. Volume of Sub-Cortical Structures in Posttraumatic Stress Disorder from Multi-Site Investigation by ENIGMA and PGC Consortia. Biological Psychiatry, 2017, 81, S36-S37.	1.3	2
57	Diverging volumetric trajectories following pediatric traumatic brain injury. NeuroImage: Clinical, 2017, 15, 125-135.	2.7	28
58	A network approach to examining injury severity in pediatric TBI. , 2017, 2017, 105-108.		9
59	3 <scp>D</scp> tractâ€specific local and global analysis of white matter integrity in <scp>A</scp> lzheimer's disease. Human Brain Mapping, 2017, 38, 1191-1207.	3.6	39
60	Tract-based spectroscopy to investigate pediatric brain trauma. , 2017, , .		0
61	Altered network topology in pediatric traumatic brain injury. , 2017, , .		Ο
62	Examination of corticothalamic fiber projections in United States service members with mild traumatic brain injury. , 2017, , .		0
63	Fiber Tracking in Traumatic Brain Injury: Comparison of 9 Tractography Algorithms. Lecture Notes in Computer Science, 2016, , 33-44.	1.3	0
64	Tensor-Based Morphometry Reveals Volumetric Deficits in Moderate/Severe Pediatric Traumatic Brain Injury. Journal of Neurotrauma, 2016, 33, 840-852.	3.4	28
65	Multi-modal Registration Improves Group Discrimination in Pediatric Traumatic Brain Injury. Lecture Notes in Computer Science, 2016, 10154, 32-42.	1.3	Ο
66	White matter integrity in traumatic brain injury: Effects of permissible fiber turning angle. , 2015, 2015, 930-933.		9
67	Adaptive algorithms to map how brain trauma affects anatomical connectivity in children. Proceedings of SPIE, 2015, , .	0.8	1
68	Callosal Function in Pediatric Traumatic Brain Injury Linked to Disrupted White Matter Integrity. Journal of Neuroscience, 2015, 35, 10202-10211.	3.6	79
69	White matter disruption in moderate/severe pediatric traumatic brain injury: Advanced tract-based analyses. NeuroImage: Clinical, 2015, 7, 493-505.	2.7	71
70	Development of insula connectivity between ages 12 and 30 revealed by high angular resolution diffusion imaging. Human Brain Mapping, 2014, 35, 1790-1800.	3.6	45
71	Functional Brain Connectivity Using fMRI in Aging and Alzheimer's Disease. Neuropsychology Review, 2014, 24, 49-62.	4.9	427
72	Reprint of: Mapping connectivity in the developing brain. International Journal of Developmental Neuroscience, 2014, 32, 41-57.	1.6	17

#	Article	IF	CITATIONS
73	Identifying candidate gene effects by restricting search space in a multivariate genetic analysis of white matter microstructure. , 2014, , .		1
74	Obesity gene NEGR1 associated with white matter integrity in healthy young adults. NeuroImage, 2014, 102, 548-557.	4.2	35
75	Serum cholesterol and variant in cholesterol-related gene CETP predict white matter microstructure. Neurobiology of Aging, 2014, 35, 2504-2513.	3.1	26
76	Mapping connectivity in the developing brain. International Journal of Developmental Neuroscience, 2013, 31, 525-542.	1.6	72
77	Alzheimer's disease disrupts rich club organization in brain connectivity networks. , 2013, , 266-269.		40
78	Development of brain structural connectivity between ages 12 and 30: A 4-Tesla diffusion imaging study in 439 adolescents and adults. NeuroImage, 2013, 64, 671-684.	4.2	172
79	Development of the "rich club" in brain connectivity networks from 438 adolescents & adults aged 12 to 30. , 2013, , 624-627.		24
80	Typical and atypical brain development: a review of neuroimaging studies. Dialogues in Clinical Neuroscience, 2013, 15, 359-384.	3.7	106
81	Changes in anatomical brain connectivity between ages 12 and 30: A HARDI study of 467 adolescents and adults. , 2012, , 904-908.		8
82	Left versus right hemisphere differences in brain connectivity: 4-Tesla HARDI tractography in 569 twins. , 2012, 2012, 526-529.		16
83	Test-Retest Reliability of Graph Theory Measures of Structural Brain Connectivity. Lecture Notes in Computer Science, 2012, 15, 305-312.	1.3	33
84	Default-Mode and Task-Positive Network Activity in Major Depressive Disorder: Implications for Adaptive and Maladaptive Rumination. Biological Psychiatry, 2011, 70, 327-333.	1.3	646
85	Resting-state fMRI can reliably map neural networks in children. NeuroImage, 2011, 55, 165-175.	4.2	146
86	Altered Structural Brain Connectivity in Healthy Carriers of the Autism Risk Gene, <i>CNTNAP2</i> . Brain Connectivity, 2011, 1, 447-459.	1.7	98
87	Anxiety Modulates Insula Recruitment in Resting-State Functional Magnetic Resonance Imaging in Youth and Adults. Brain Connectivity, 2011, 1, 245-254.	1.7	50
88	Neural correlates of rumination in depression. Cognitive, Affective and Behavioral Neuroscience, 2010, 10, 470-478.	2.0	394