Mei-Xiang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1010861/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anionâ^'Ï€ Interactions: Generality, Binding Strength, and Structure. Journal of the American Chemical Society, 2013, 135, 892-897.	6.6	372
2	Nitrogen and Oxygen Bridged Calixaromatics: Synthesis, Structure, Functionalization, and Molecular Recognition. Accounts of Chemical Research, 2012, 45, 182-195.	7.6	370
3	Heterocalixaromatics, new generation macrocyclic host molecules in supramolecular chemistry. Chemical Communications, 2008, , 4541.	2.2	266
4	Synthesis, Structure, and[60]Fullerene Complexation Properties of Azacalix[m]arene[n]pyridines. Angewandte Chemie - International Edition, 2004, 43, 838-842.	7.2	260
5	A General and High Yielding Fragment Coupling Synthesis of Heteroatom-Bridged Calixarenes and the Unprecedented Examples of Calixarene Cavity Fine-Tuned by Bridging Heteroatoms. Journal of the American Chemical Society, 2004, 126, 15412-15422.	6.6	259
6	Halide Recognition by Tetraoxacalix[2]arene[2]triazine Receptors: Concurrent Noncovalent Halide–i̇́€ and Loneâ€pair–i̇́E Interactions in Host–Halide–Water Ternary Complexes. Angewandte Chemie - International Edition, 2008, 47, 7485-7488.	7.2	251
7	Still Unconquered: Enantioselective Passerini and Ugi Multicomponent Reactions. Accounts of Chemical Research, 2018, 51, 1290-1300.	7.6	186
8	Synthesis of Substituted Pyridines from Cascade [1 + 5] Cycloaddition of Isonitriles to <i>N</i> -Formylmethyl-Substituted Enamides, Aerobic Oxidative Aromatization, and Acyl Transfer Reaction. Journal of the American Chemical Society, 2013, 135, 4708-4711.	6.6	178
9	Room-temperature aerobic formation of a stable aryl–Cu(iii) complex and its reactions with nucleophiles: highly efficient and diverse arene C–H functionalizations of azacalix[1]arene[3]pyridine. Chemical Communications, 2009, , 2899.	2.2	163
10	BrÃ,nsted Acid Catalyzed Enantioselective Threeâ€Component Reaction Involving the αâ€Addition of Isocyanides to Imines. Angewandte Chemie - International Edition, 2009, 48, 6717-6721.	7.2	161
11	Cr(III)(salen)Cl Catalyzed Enantioselective Intramolecular Addition of Tertiary Enamides to Ketones: A General Access to Enantioenriched 1 <i>H</i> -Pyrrol-2(3 <i>H</i>)-one Derivatives Bearing a Hydroxylated Quaternary Carbon Atom. Journal of the American Chemical Society, 2009, 131, 10390-10391.	6.6	142
12	Methylazacalixpyridines: Remarkable Bridging Nitrogen-Tuned Conformations and Cavities with Unique Recognition Properties. Chemistry - A European Journal, 2006, 12, 9262-9275.	1.7	140
13	Catalytic Enantioselective Passerini Threeâ€Component Reaction. Angewandte Chemie - International Edition, 2008, 47, 388-391.	7.2	139
14	Versatile Anion–π Interactions between Halides and a Conformationally Rigid Bis(tetraoxacalix[2]arene[2]triazine) Cage and Their Directing Effect on Molecular Assembly. Chemistry - A European Journal, 2010, 16, 13053-13057.	1.7	137
15	Enantioselective Biotransformations of Nitriles in Organic Synthesis. Topics in Catalysis, 2005, 35, 117-130.	1.3	131
16	Asymmetric Synthesis of 5â€(1â€Hydroxyalkyl)tetrazoles by Catalytic Enantioselective Passeriniâ€Type Reactions. Angewandte Chemie - International Edition, 2008, 47, 9454-9457.	7.2	124
17	Exploring Anionâ^ï€ Interactions and Their Applications in Supramolecular Chemistry. Accounts of Chemical Research, 2020, 53, 1364-1380.	7.6	124
18	Direct Synthesis of High-Valent Aryl–Cu(II) and Aryl–Cu(III) Compounds: Mechanistic Insight into Arene C–H Bond Metalation. Journal of the American Chemical Society, 2014, 136, 6326-6332.	6.6	117

#	Article	IF	CITATIONS
19	Exploring tertiary enamides as versatile synthons in organic synthesis. Chemical Communications, 2015, 51, 6039-6049.	2.2	116
20	Methylazacalix[4]pyridine:  En Route to Zn2+-Specific Fluoresence Sensors. Organic Letters, 2006, 8, 4895-4898.	2.4	114
21	Designed Synthesis of Metal Cluster-Centered Pseudo-Rotaxane Supramolecular Architectures. Journal of the American Chemical Society, 2011, 133, 8448-8451.	6.6	114
22	Catalytic Asymmetric Passerini-Type Reaction: Chiral Aluminumâ^'Organophosphate-Catalyzed Enantioselective α-Addition of Isocyanides to Aldehydes. Journal of Organic Chemistry, 2009, 74, 8396-8399.	1.7	111
23	Enantioselective Biotransformations of Nitriles in Organic Synthesis. Accounts of Chemical Research, 2015, 48, 602-611.	7.6	108
24	Chiral Salenâ^'Aluminum Complex as a Catalyst for Enantioselective α-Addition of Isocyanides to Aldehydes:  Asymmetric Synthesis of 2-(1-Hydroxyalkyl)-5-aminooxazoles. Organic Letters, 2007, 9, 3615-3618.	2.4	106
25	Stabilization of a Reactive Polynuclear Silver Carbide Cluster through the Encapsulation within a Supramolecular Cage. Journal of the American Chemical Society, 2012, 134, 824-827.	6.6	105
26	Synthesis of Large Macrocyclic Azacalix[<i>n</i>]pyridines (<i>n</i> = 6 â^ 9) and Their Complexation with Fullerenes C ₆₀ and C ₇₀ . Organic Letters, 2008, 10, 2565-2568.	2.4	102
27	Aromatic hydrocarbon belts. Nature Chemistry, 2021, 13, 402-419.	6.6	102
28	Tuning the Reactivity of Isocyano Group: Synthesis of Imidazoles and Imidazoliums from Propargylamines and Isonitriles in the Presence of Multiple Catalysts. Angewandte Chemie - International Edition, 2015, 54, 1293-1297.	7.2	97
29	Highly Efficient and Stereoselective N-Vinylation of Oxiranecarboxamides and Unprecedented 8-endo-Epoxy-arene Cyclization:Â Expedient and Biomimetic Synthesis of SomeClausenaAlkaloids. Organic Letters, 2007, 9, 1387-1390.	2.4	95
30	Cu(ClO ₄) ₂ -Mediated Arene C–H Bond Halogenations of Azacalixaromatics Using Alkali Metal Halides as Halogen Sources. Journal of Organic Chemistry, 2012, 77, 3336-3340.	1.7	95
31	Chiral Phosphoric Acid Catalyzed Asymmetric Ugi Reaction by Dynamic Kinetic Resolution of the Primary Multicomponent Adduct. Angewandte Chemie - International Edition, 2016, 55, 5282-5285.	7.2	95
32	Synthesis, Structure, and Properties of O ₆ orona[3]arene[3]tetrazines. Angewandte Chemie - International Edition, 2014, 53, 13548-13552.	7.2	93
33	Toward the Synthesis of a Highly Strained Hydrocarbon Belt. Journal of the American Chemical Society, 2020, 142, 4576-4580.	6.6	90
34	Zinc Bromide Promoted Coupling of Isonitriles with Carboxylic Acids To Form 2,4,5â€Trisubstituted Oxazoles. Angewandte Chemie - International Edition, 2013, 52, 10878-10882.	7.2	85
35	Asymmetric Lewis Acid Catalyzed Addition of Isocyanides to Aldehydes – Synthesis of 5-Amino-2-(1-hydroxyalkyl)oxazoles. European Journal of Organic Chemistry, 2007, 2007, 4076-4080. 	1.2	81
36	Practical and Convenient Enzymatic Synthesis of Enantiopure α-Amino Acids and Amides. Journal of Organic Chemistry, 2002, 67, 6542-6545.	1.7	78

#	Article	IF	CITATIONS
37	Enantioselective biotransformations of racemic α-substituted phenylacetonitriles and phenylacetamides using Rhodococcus sp. AJ270. Tetrahedron: Asymmetry, 2000, 11, 1123-1135.	1.8	77
38	Synthesis and structure of nitrogen bridged calix[5]- and -[10]-pyridines and their complexation with fullerenes. Chemical Communications, 2007, , 3856.	2.2	77
39	Ion pair receptors based on anion–π interaction. Chemical Communications, 2011, 47, 8112.	2.2	75
40	Synthesis and Molecular Recognition of Waterâ€Soluble <i>S</i> ₆ â€Corona[3]arene[3]pyridazines. Angewandte Chemie - International Edition, 2015, 54, 8386-8389.	7.2	74
41	Efficient Functionalizations of Heteroatom-Bridged Calix[2]arene[2]triazines on the Larger Rim. Journal of Organic Chemistry, 2007, 72, 3757-3763.	1.7	72
42	Formation and Conformational Conversion of Flattened Partial Cone Oxygen Bridged Calix[2]arene[2]triazines. Organic Letters, 2007, 9, 2847-2850.	2.4	71
43	Highly Selective Recognition of Diols by a Self-Regulating Fine-Tunable Methylazacalix[4]pyridine Cavity: Guest-Dependent Formation of Molecular-Sandwich and Molecular-Capsule Complexes in Solution and the Solid State. Chemistry - A European Journal, 2007, 13, 7791-7802.	1.7	71
44	Synthesis and Structure of Upper-Rim 1,3-Alternate Tetraoxacalix[2]arene[2]triazine Azacrowns and Change of Cavity in Response to Fluoride Anion. Journal of Organic Chemistry, 2007, 72, 5218-5226.	1.7	69
45	Highly Efficient and Expedient Synthesis of 5-Hydroxy-1 <i>H</i> -pyrrol-2-(5 <i>H</i>)-ones from FeCl ₃ -Catalyzed Tandem Intramolecular Enaminic Addition of Tertiary Enamides to Ketones and 1,3-Hydroxy Rearrangement. Organic Letters, 2010, 12, 3918-3921.	2.4	69
46	Catalytic Enantioselective Double Carbopalladation/Câ^'H Functionalization with Statistical Amplification of Product Enantiopurity: A Convertible Linker Approach. Angewandte Chemie - International Edition, 2017, 56, 14192-14196.	7.2	65
47	Reversal of Nucleophilicity of Enamides in Water: Control of Cyclization Pathways by Reaction Media for the Orthogonal Synthesis of Dihydropyridinone and Pyrrolidinone Clausena Alkaloids. Organic Letters, 2008, 10, 2461-2464.	2.4	64
48	Regiospecific Functionalization of Azacalixaromatics through Copper-Mediated Aryl C–H Activation and C–O Bond Formation. Organic Letters, 2011, 13, 6560-6563.	2.4	63
49	Molecular Barrel by a Hooping Strategy: Synthesis, Structure, and Selective CO ₂ Adsorption Facilitated by Lone Pairâ^l€ Interactions. Journal of the American Chemical Society, 2017, 139, 635-638.	6.6	62
50	Synthesis, Structure and Molecular Recognition of Functionalised Tetraoxacalix[2]arene[2]triazines. Chemistry - A European Journal, 2010, 16, 7265-7275.	1.7	60
51	Anion Recognition by Charge Neutral Electron-deficient Arene Receptors. Chimia, 2011, 65, 939-943.	0.3	60
52	Coronarenes: recent advances and perspectives on macrocyclic and supramolecular chemistry. Science China Chemistry, 2018, 61, 993-1003.	4.2	60
53	Catalytic Asymmetric Difunctionalization of Stable Tertiary Enamides with Salicylaldehydes: Highly Efficient, Enantioselective, and Diastereoselective Synthesis of Diverse 4-Chromanol Derivatives. Organic Letters, 2014, 16, 5972-5975.	2.4	59
54	Hydrocarbon Belts with Truncated Cone Structures. Journal of the American Chemical Society, 2020, 142, 1196-1199.	6.6	59

#	Article	IF	CITATIONS
55	Enantioselective Synthesis of 4â€Hydroxytetrahydropyridine Derivatives by Intramolecular Addition of Tertiary Enamides to Aldehydes. Angewandte Chemie - International Edition, 2012, 51, 4417-4420.	7.2	58
56	Synthesis of Tetraazacalix[2]arene[2]triazines:  Tuning the Cavity by the Substituents on the Bridging Nitrogen Atoms. Organic Letters, 2006, 8, 5967-5970.	2.4	56
57	Nitrile Biotransformations for the Efficient Synthesis of Highly Enantiopure 1-Arylaziridine-2-carboxylic Acid Derivatives and Their Stereoselective Ring-Opening Reactions. Journal of Organic Chemistry, 2007, 72, 2040-2045.	1.7	56
58	Catalytic Asymmetric Tandem Reaction of Tertiary Enamides: Expeditious Synthesis of Pyrrolo[2,1â€ <i>a</i>]isoquinoline Alkaloid Derivatives. Angewandte Chemie - International Edition, 2016, 55, 3799-3803.	7.2	56
59	Nitrile Biotransformations for the Synthesis of Highly Enantioenriched β-Hydroxy and β-Amino Acid and Amide Derivatives: A General and Simple but Powerful and Efficient Benzyl Protection Strategy To Increase Enantioselectivity of the Amidase. Journal of Organic Chemistry, 2008, 73, 4087-4091.	1.7	55
60	Highly efficient and concise synthesis of both antipodes of SB204900, clausenamide, neoclausenamide, homoclausenamide and ζ-clausenamide. Implication of biosynthetic pathways of clausena alkaloids. Organic and Biomolecular Chemistry, 2009, 7, 2628.	1.5	53
61	Construction of Caryl–CalkynylBond from Copper-Mediated Arene–Alkyne and Aryl Iodide–Alkyne Cross-Coupling Reactions: A Common Aryl-CullIIntermediate in Arene C–H Activation and Castro–Stephens Reaction. Organic Letters, 2012, 14, 1472-1475.	2.4	53
62	Synthesis of 1,3,5-alternate azacalix[3]pyridine[3]pyrimidine and its complexation with fullerenes via multiple ï€/ï€ and CH/ï€ interactions. Chemical Communications, 2011, 47, 9690.	2.2	52
63	Mechanistic Study on Cu(II)-Catalyzed Oxidative Cross-Coupling Reaction between Arenes and Boronic Acids under Aerobic Conditions. Journal of the American Chemical Society, 2018, 140, 5579-5587.	6.6	52
64	Catalytic Enantioselective Synthesis and Switchable Chiroptical Property of Inherently Chiral Macrocycles. Journal of the American Chemical Society, 2020, 142, 14432-14436.	6.6	52
65	Anion-directed assembly of a rectangular supramolecular cage in the solid state with electron-deficient phenoxylated oxacalix[2]arene[2]triazine. Chemical Communications, 2012, 48, 11458.	2.2	51
66	Caryl–Calkyl bond formation from Cu(ClO4)2-mediated oxidative cross coupling reaction between arenes and alkyllithium reagents through structurally well-defined Ar–Cu(iii) intermediates. Chemical Communications, 2012, 48, 9418.	2.2	51
67	Synthesis and Structure of Oxacalix[2]arene[2]triazines of an Expanded π-Electron-Deficient Cavity and Their Interactions with Anions. Journal of Organic Chemistry, 2012, 77, 1860-1867.	1.7	50
68	Enzymatic desymmetrization of 3-alkyl- and 3-arylglutaronitriles, a simple and convenient approach to optically active 4-amino-3-phenylbutanoic acids. Tetrahedron: Asymmetry, 2002, 12, 3367-3373.	1.8	49
69	Synthesis and Functionalization of Heteroatom-Bridged Bicyclocalixaromatics, Large Molecular Triangular Prisms with Electron-Rich and -Deficient Aromatic Interiors. Journal of Organic Chemistry, 2011, 76, 1804-1813.	1.7	49
70	Zigzag Hydrocarbon Belts. CCS Chemistry, 2021, 3, 916-931.	4.6	49
71	Nitrile Biotransformations for Highly Efficient and Enantioselective Syntheses of Electrophilic Oxiranecarboxamides. Journal of Organic Chemistry, 2003, 68, 4570-4573.	1.7	48
72	Nitrile biotransformations for the synthesis of enantiomerically enriched Baylis–Hillman adducts. Organic and Biomolecular Chemistry, 2003, 1, 535-540.	1.5	48

#	Article	IF	CITATIONS
73	Synthesis, Structure, and Anion Binding Properties of Electronâ€Deficient Tetrahomocorona[4]arenes: Shape Selectivity in Anion–΀ Interactions. Angewandte Chemie - International Edition, 2018, 57, 6536-6540.	7.2	48
74	En route to inherently chiral tetraoxacalix[2]arene[2]triazines. Tetrahedron, 2007, 63, 10801-10808.	1.0	47
75	Synthesis of 2,3-Dihydro-1 <i>H</i> -azepine and 1 <i>H</i> -Azepin-2(3 <i>H</i>)-one Derivatives From Intramolecular Condensation between Stable Tertiary Enamides and Aldehydes. Journal of Organic Chemistry, 2015, 80, 12047-12057.	1.7	47
76	Synthesis of (NH) _{<i>m</i>} (NMe) _{4â^'<i>m</i>} -Bridged Calix[4]pyridines and the Effect of NH Bridge on Structure and Properties. Journal of Organic Chemistry, 2009, 74, 8595-8603.	1.7	46
77	Nitrile Biotransformations for Highly Enantioselective Synthesis of Oxiranecarboxamides with Tertiary and Quaternary Stereocenters; Efficient Chemoenzymatic Approaches to Enantiopure α-Methylated Serine and Isoserine Derivatives. Journal of Organic Chemistry, 2005, 70, 2439-2444.	1.7	45
78	Construction of Hydrocarbon Nanobelts. Angewandte Chemie - International Edition, 2020, 59, 7700-7705.	7.2	45
79	Enantioselective synthesis of chiral cyclopropane compounds through microbial transformations of trans-2-arylcyclopropanecarbonitriles. Tetrahedron Letters, 2000, 41, 6501-6505.	0.7	44
80	Synthesis, Structure, and Functionalization of Homo Heterocalix[2]arene[2]triazines: Versatile Conformation and Cavity Structures Regulated by the Bridging Elements. Journal of Organic Chemistry, 2010, 75, 3786-3796.	1.7	44
81	A novel approach to enantiopure cyclopropane compounds from biotransformation of nitrilesElectronic supplementary information (ESI) available: preparation of racemic nitrile, amides and acids; spectroscopic data of racemic nitriles; biotransformation of racemic amides; chiral HPLC analyses of nitriles, amides, acids and amines. See http://www.rsc.org/suppdata/nj/b2/b200110a/. New	1.4	42
82	Highly enantioselective biotransformations of 2-aryl-4-pentenenitriles, a novel chemoenzymatic approach to (R)-(â°')-baclofen. Tetrahedron Letters, 2002, 43, 6617-6620.	0.7	42
83	Nitrile Biotransformation for Highly Enantioselective Synthesis of 3-Substituted 2,2-Dimethylcyclopropanecarboxylic Acids and Amides. Journal of Organic Chemistry, 2003, 68, 621-624.	1.7	42
84	Highly Efficient and Enantioselective Biotransformations of Racemic Azetidine-2-carbonitriles and Their Synthetic Applications. Journal of Organic Chemistry, 2009, 74, 6077-6082.	1.7	42
85	Cu(OTf) ₂ -Catalyzed Selective Arene C–H Bond Hydroxylation and Nitration with KNO ₂ as an Ambident <i>O</i> - and <i>N</i> -Nucleophile via a Cu(II)–Cu(II)–Cu(I) Mechanism. Organic Letters, 2013, 15, 3836-3839.	2.4	42
86	Designing a Cu(II)–ArCu(II)–ArCu(III)–Cu(I) Catalytic Cycle: Cu(II)-Catalyzed Oxidative Arene C–H Bond Azidation with Air as an Oxidant under Ambient Conditions. Journal of Organic Chemistry, 2014, 79, 11139-11145.	1.7	42
87	Synthesis, Structure, and Fullerene-Complexing Property of Azacalix[6]aromatics. Journal of Organic Chemistry, 2014, 79, 3559-3571.	1.7	42
88	Synthesis, Structure, and Molecular Recognition of S ₆ ―and (SO ₂) ₆ â€Corona[6](het)arenes: Control of Macrocyclic Conformation and Properties by the Oxidation State of the Bridging Heteroatoms. Chemistry - A European Journal, 2016, 22, 6947-6955.	1.7	42
89	Highly selective complexation of metal ions by the self-tuning tetraazacalixpyridine macrocycles. Tetrahedron, 2009, 65, 87-92.	1.0	41
90	Corona[5]arenes Accessed by a Macrocycleâ€ŧoâ€Macrocycle Transformation Route and a Oneâ€Pot Threeâ€Component Reaction. Angewandte Chemie - International Edition, 2017, 56, 7151-7155.	7.2	41

#	Article	IF	CITATIONS
91	Synthesis of enantiomerically enriched (S)-(+)-2-aryl-4-pentenoic acids and (R)-(â^')-2-aryl-4-pentenamides via microbial hydrolysis of nitriles, a chemoenzymatic approach to stereoisomers of α,γ-disubstituted γ-butyrolactones. Tetrahedron: Asymmetry, 2002, 13, 1695-1702.	1.8	40
92	Efficient Biocatalytic Synthesis of Highly Enantiopureα-Alkylated Arylglycines and Amides. Advanced Synthesis and Catalysis, 2004, 346, 439-445.	2.1	40
93	Synthesis and Highly Selective Bromination of Azacalix[4]pyrimidine Macrocycles. Journal of Organic Chemistry, 2010, 75, 741-747.	1.7	40
94	Silverâ€Catalyzed Threeâ€Component 1,1â€Aminoacylation of Homopropargylamines: αâ€Additions for Both Terminal Alkynes and Isocyanides. Angewandte Chemie - International Edition, 2017, 56, 7958-7962.	7.2	40
95	Microbial desymmetrization of 3-arylglutaronitriles, an unusual enhancement of enantioselectivity in the presence of additives. Tetrahedron Letters, 2000, 41, 8549-8552.	0.7	39
96	Structural Diversity in Coordination Self-Assembled Networks of a Multimodal Ligand Azacalix[4]pyrazine. Inorganic Chemistry, 2012, 51, 3860-3867.	1.9	39
97	Switchable [3+2] and [4+2] Heteroannulation of Primary Propargylamines with Isonitriles to Imidazoles and 1,6â€Dihydropyrimidines: Catalyst Loading Enabled Reaction Divergence. Chemistry - A European Journal, 2016, 22, 8332-8338.	1.7	38
98	An Unusual β-Vinyl Effect Leading to High Efficiency and Enantioselectivity of the Amidase, Nitrile Biotransformations for the Preparation of Enantiopure 3-Arylpent-4-enoic Acids and Amides and Their Applications in Synthesis. Journal of Organic Chemistry, 2006, 71, 9532-9535.	1.7	37
99	Highly efficient construction of large molecular cavity using 1,3-alternate tetraoxacalix[2]arene[2]triazine as a platform. Chemical Communications, 2008, , 3864.	2.2	37
100	Synthesis, Resolution, Structure, and Racemization of Inherently Chiral 1,3-Alternate Azacalix[4]pyrimidines: Quantification of Conformation Mobility. Journal of Organic Chemistry, 2014, 79, 2178-2188.	1.7	37
101	Enzymatic synthesis of optically active 2-methyl- and 2,2-dimethylcyclopropanecarboxylic acids and their derivatives. Journal of Molecular Catalysis B: Enzymatic, 2002, 18, 267-272.	1.8	36
102	Synthesis, Structure, and Reactions of NH-Bridged Calix[m]arene[n]pyridines. Journal of Organic Chemistry, 2009, 74, 5361-5368.	1.7	36
103	Fluorophores for Excitedâ€State Intramolecular Proton Transfer by an Yttrium Triflate Catalyzed Reaction of Isocyanides with Thiocarboxylic Acids. Angewandte Chemie - International Edition, 2017, 56, 6599-6603.	7.2	36
104	Nitrile and Amide Biotransformations for Efficient Synthesis of Enantiopure gem-Dihalocyclopropane Derivatives. Advanced Synthesis and Catalysis, 2003, 345, 695-698.	2.1	35
105	Synthesis of high enantiomeric purity gem-dihalocyclopropane derivatives from biotransformations of nitriles and amides. Tetrahedron: Asymmetry, 2004, 15, 347-354.	1.8	34
106	Nitrile and Amide Biotransformations for the Synthesis of Enantiomerically Pure 3-Arylaziridine-2-carboxamide Derivatives and Their Stereospecific Ring-Opening Reactions. Journal of Organic Chemistry, 2007, 72, 9391-9394.	1.7	34
107	Synthesis of Multifunctionalized 1,2,3,4â€Tetrahydropyridines, 2,3â€Dihydropyridinâ€4(1 <i>H</i>)â€ones, and Pyridines from Tandem Reactions Initiated by [5+1] Cycloaddition of <i>N</i> â€Formylmethylâ€Substituted Enamides to Isocyanides: Mechanistic Insight and Synthetic Application. Chemistry - A European Journal, 2013, 19, 16981-16987	1.7	34
108	Synthesis of diverse di- to penta-substituted 1,2-dihydropyridine derivatives from gold(I)-catalyzed intramolecular addition of tertiary enamides to alkynes. Tetrahedron Letters, 2015, 56, 3898-3901.	0.7	34

#	Article	IF	CITATIONS
109	O ₆ -Corona[6]arenes with Expanded Cavities for Specific Complexation with C ₇₀ . Organic Letters, 2017, 19, 1590-1593.	2.4	32
110	Synthesis of 4-amino-1,2,3,4-tetrahydropyridine derivatives by intramolecular nucleophilic addition of tertiary enamides to in-situ generated imines. Tetrahedron, 2012, 68, 6492-6497.	1.0	31
111	Lewis acid catalyst-steered divergent synthesis of functionalized vicinal amino alcohols and pyrroles from tertiary enamides. Organic Chemistry Frontiers, 2018, 5, 3138-3142.	2.3	31
112	Dramatic Enhancement of Enantioselectivity of Biotransformations of β-Hydroxy Nitriles Using a SimpleO-Benzyl Protection/Docking Group. Organic Letters, 2006, 8, 3231-3234.	2.4	30
113	Synthesis of trifluoromethylthiolated azacalix[1]arene[3]pyridines from the Cu(<scp>ii</scp>)-mediated direct trifluoromethylthiolation reaction of arenes via reactive arylcopper(<scp>iii</scp>) intermediates. Organic Chemistry Frontiers, 2016, 3, 880-886.	2.3	30
114	Synthesis, Structure, and Properties of Corona[6]arenes and Their Assembly with Anions in the Crystalline State. Journal of Organic Chemistry, 2018, 83, 1502-1509.	1.7	30
115	Synthesis of optically active α-methylamino acids and amides through biocatalytic kinetic resolution of amides. Tetrahedron: Asymmetry, 2005, 16, 2409-2416.	1.8	29
116	Remarkable Electronic and Steric Effects in the Nitrile Biotransformations for the Preparation of Enantiopure Functionalized Carboxylic Acids and Amides:Â Implication for an Unsaturated Carbonâ^'Carbon Bond Binding Domain of the Amidase. Journal of Organic Chemistry, 2007, 72, 6060-6066	1.7	29
117	Immobilization of Rhodococcus sp. AJ270 in alginate capsules and its application in enantioselective biotransformation of trans-2-methyl-3-phenyl-oxiranecarbonitrile and amide. Enzyme and Microbial Technology, 2006, 39, 1-5.	1.6	28
118	Synthesis and Structure of Corona[6](het)arenes Containing Mixed Bridge Units. Organic Letters, 2016, 18, 2668-2671.	2.4	28
119	Oxygen―and Nitrogenâ€Embedded Zigzag Hydrocarbon Belts. Angewandte Chemie - International Edition, 2020, 59, 23649-23658.	7.2	28
120	Progress of Enantioselective Nitrile Biotransformations in Organic Synthesis. Chimia, 2009, 63, 331.	0.3	26
121	Intramolecular Arylation of Tertiary Enamides through Pd(OAc) ₂ -Catalyzed Dehydrogenative Cross-Coupling Reaction: Construction of Fused <i>N</i> -Heterocyclic Scaffolds and Synthesis of Isoindolobenzazepine Alkaloids. Journal of Organic Chemistry, 2019, 84, 2870-2878.	1.7	26
122	Synthesis and Application of Enantioenriched Functionalized α-Tetrasubstituted α-Amino Acids from Biocatalytic Desymmetrization of Prochiral α-Aminomalonamides. Journal of Organic Chemistry, 2012, 77, 5584-5591.	1.7	25
123	Synthesis of <i>i</i> orona[6]arenes for Selective Anion Binding: Interdependent and Synergistic Anion–i€ and Hydrogenâ€Bond Interactions. Angewandte Chemie - International Edition, 2020, 59, 23716-23723.	7.2	25
124	Rational design of a functionalized oxacalix[2]arene[2]triazine host for selective recognition of H2PO4â^' by cooperative anion–΀ and hydrogen bond interactions. Tetrahedron Letters, 2012, 53, 6226-6229.	0.7	24
125	Radical Reactivity, Catalysis, and Reaction Mechanism of Arylcopper(II) Compounds: The Missing Link in Organocopper Chemistry. Journal of the American Chemical Society, 2019, 141, 18341-18348.	6.6	24
126	Synthesis, Structure and Metal Binding Property of Internally 1,3-Arylene-Bridged Azacalix[6]aromatics. Journal of Organic Chemistry, 2012, 77, 10073-10082.	1.7	23

#	Article	IF	CITATIONS
127	A [2+3] fragment coupling approach to N,O-bridged calix[1]arene[4]pyridines and their complexation with C60. Tetrahedron Letters, 2009, 50, 7209-7212.	0.7	22
128	Functionalized imidazoliniums from the three-component domino reaction of N-formylmethylcarboxamides with amines and isocyanides. Organic Chemistry Frontiers, 2014, 1, 909-913.	2.3	22
129	Biotransformations of Racemic 2,3-Allenenitriles in Biphasic Systems: Synthesis and Transformations of Enantioenriched Axially Chiral 2,3-Allenoic Acids and Their Derivatives. Journal of Organic Chemistry, 2014, 79, 3103-3110.	1.7	22
130	Functionalization of Azacalixaromatics by Cu(II)-Catalyzed Oxidative Cross-Coupling Reaction between the Arene C–H Bond and Boronic Acids. Organic Letters, 2016, 18, 5078-5081.	2.4	22
131	Functionalized O ₆ –Corona[6]arenes: Synthesis, Structure, and Fullerene Complexation Property. Organic Letters, 2016, 18, 3126-3129.	2.4	22
132	Construction of Hydrocarbon Nanobelts. Angewandte Chemie, 2020, 132, 7774-7779.	1.6	22
133	Synthesis of Electronâ€Deficient Corona[5]arenes and Their Selective Complexation with Dihydrogen Phosphate: Cooperative Effects of Anionâ€″Ĩ€ Interactions. Angewandte Chemie - International Edition, 2020, 59, 8078-8083.	7.2	22
134	The Reaction of Benzoyl Substituted Heterocyclic Ketene Aminals with 4-Nitrobenzhydroximic Acid Chloride. Synthetic Communications, 1991, 21, 1167-1176.	1.1	21
135	Ring-Chain Tautomerism in Organic Synthesis:Â Synthesis of Heterocyclic Enamines from a Novel and Practical Formal Ring Transformation Reaction of Lactones. Journal of Organic Chemistry, 2003, 68, 3281-3286.	1.7	21
136	Synthesis and Structure of Functionalized Zigzag Hydrocarbon Belts. Angewandte Chemie - International Edition, 2020, 59, 18151-18155.	7.2	21
137	Nitrile biotransformations for the practical synthesis of highly enantiopure azido carboxylic acids and amides, â€~click' to functionalized chiral triazoles and chiral β-amino acids. Tetrahedron: Asymmetry, 2006, 17, 2366-2376.	1.8	20
138	Enantioselective Biotransformations of Racemic and Meso Pyrrolidine-2,5-dicarboxamides and Their Application in Organic Synthesis. Journal of Organic Chemistry, 2012, 77, 4063-4072.	1.7	20
139	Synthesis of Electron-Deficient Oxacalix[2]arene[2]triazines and Their Isomeric Analogs from a One-Pot Reaction of Perfluorinated Dihydroxybenzenes with Dichlorotriazines. Organic Letters, 2013, 15, 4414-4417.	2.4	19
140	Practical biocatalytic desymmetrization of meso-N-heterocyclic dicarboxamides and their application in the construction of aza-sugar containing nucleoside analogs. Chemical Communications, 2012, 48, 3482.	2.2	18
141	Liquid crystalline macrocyclic azacalix[4]pyridine and its complexes with the zinc ion: conformational change from the saddle to flattened shape. Chemical Communications, 2015, 51, 5112-5115.	2.2	18
142	Lewis acid-catalyzed reaction between tertiary enamides and imines of salicylaldehydes: expedient synthesis of novel 4-chromanamine derivatives. Tetrahedron, 2015, 71, 523-531.	1.0	18
143	Highly efficient and enantioselective biotransformations of β-lactam carbonitriles and carboxamides and their synthetic applications. Organic and Biomolecular Chemistry, 2010, 8, 4736.	1.5	17
144	Catalytic enantioselective synthesis of indolizino[8,7- <i>b</i>]indole alkaloid derivatives based on the tandem reaction of tertiary enamides. Organic Chemistry Frontiers, 2021, 8, 721-726.	2.3	17

#	Article	IF	CITATIONS
145	Biocatalysis - A Gateway to Industrial Biotechnology. Advanced Synthesis and Catalysis, 2011, 353, 2189-2190.	2.1	16
146	Microbial whole cell-catalyzed desymmetrization of prochiral malonamides: practical synthesis of enantioenriched functionalized carbamoylacetates and their application in the preparation of unusual α-amino acids. Tetrahedron, 2011, 67, 5604-5609.	1.0	16
147	Synthesis and Functionalization of Inherently Chiral Tetraoxacalix[2]arene[2]pyridines. Organic Letters, 2012, 14, 6254-6257.	2.4	16
148	Copper(I)-Catalyzed Halogenation and Acyloxylation of Aryl Triflates through a Copper(I)/Copper(III) Catalytic Cycle. Organometallics, 2014, 33, 1061-1067.	1.1	16
149	Understanding the driving force for the molecular recognition of S6-corona[3]arene[3]pyridazine toward organic ammonium cations. Organic Chemistry Frontiers, 2018, 5, 760-764.	2.3	16
150	Fused Nâ€Heterocycles with Contiguous Stereogenic Centers Accessed by an Asymmetric Catalytic Cascade Reaction of Tertiary Enamides. Chemistry - A European Journal, 2020, 26, 401-405.	1.7	16
151	Reversal and Amplification of the Enantioselectivity of Biocatalytic Desymmetrization toward Meso Heterocyclic Dicarboxamides Enabled by Rational Engineering of Amidase. ACS Catalysis, 2021, 11, 6900-6907.	5.5	16
152	Synthesis of Optically Active β ―Alkyl ―α ―methylene ―δ ―butyro â€lactones from Enantioselective Biotransformation of Nitriles, an Unusual Inversion of Enantioselectivity ^{â€} . Chinese Journal of Chemistry, 2002, 20, 1291-1299.	2.6	15
153	Host–Guest Interaction between Corona[<i>n</i>]arene and Bisquaternary Ammonium Derivatives for Fabricating Supra-Amphiphile. Langmuir, 2017, 33, 5829-5834.	1.6	15
154	Antitumor Activity of a 5-Hydroxy-1H-Pyrrol-2-(5H)-One-Based Synthetic Small Molecule In Vitro and In Vivo. PLoS ONE, 2015, 10, e0128928.	1.1	15
155	The Reaction of Benzoyl Substituted Heterocyclic Ketene Aminals with 2,4,6-Trimethylbenzonitrile Oxide. Synthetic Communications, 1991, 21, 1909-1915.	1.1	14
156	Nitrile biotransformations for the synthesis of enantiomerically enriched β2-, and β3-hydroxy and -alkoxy acids and amides, a dramatic O-substituent effect of the substrates on enantioselectivity. Tetrahedron: Asymmetry, 2008, 19, 322-329.	1.8	14
157	Syntheses and conformational structures of functionalized tetraoxacalix[2]arene[2]triazines. Tetrahedron, 2012, 68, 9464-9477.	1.0	14
158	Efficient synthesis of highly enantiopure β-lactam derivatives fromÂbiocatalytic transformations of amides and nitriles. Tetrahedron, 2014, 70, 4309-4316.	1.0	14
159	Synthesis, Structure, and Anion Binding Properties of Electronâ€Deficient Tetrahomocorona[4]arenes: Shape Selectivity in Anion–Ĩ€ Interactions. Angewandte Chemie, 2018, 130, 6646-6650.	1.6	14
160	Synthesis of Acetyl-Substituted Heterocyclic Enamines and Their Reaction with Diethyl Azodicarboxylate. Synthetic Communications, 1995, 25, 1339-1351.	1.1	13
161	Synthesis and structural characterization of different topological coordination polymers based on tunable Cu4Br4â´´mIm secondary building units and macrocyclic azacalixaromatics. Journal of Solid State Chemistry, 2010, 183, 3010-3016.	1.4	13
162	Corona[5]arenes Accessed by a Macrocycleâ€ŧoâ€Macrocycle Transformation Route and a Oneâ€Pot Three omponent Reaction. Angewandte Chemie, 2017, 129, 7257-7261.	1.6	13

#	Article	IF	CITATIONS
163	Organocatalytic Double Ugi Reaction with Statistical Amplification of Product Enantiopurity: A Linker Cleavage Approach To Access Highly Enantiopure Ugi Products. Organic Letters, 2020, 22, 483-487.	2.4	13
164	One-pot synthesis of oxygen and nitrogen-bridged calix[2]arene[2]triazines. Supramolecular Chemistry, 2014, 26, 601-606.	1.5	12
165	Synthesis of Functionalized Azacalix[1]arene[3]pyridine Macrocycles from Cu(II)-Mediated Direct Amination Reactions of Arene through High Valent Arylcopper(III) Intermediates. Journal of Organic Chemistry, 2016, 81, 10404-10410.	1.7	12
166	Fluorophores for Excited tate Intramolecular Proton Transfer by an Yttrium Triflate Catalyzed Reaction of Isocyanides with Thiocarboxylic Acids. Angewandte Chemie, 2017, 129, 6699-6703.	1.6	11
167	The reaction of aroyl-substituted heterocyclic ketene aminals with aryl azides. Heteroatom Chemistry, 2000, 11, 387-391.	0.4	10
168	Highly Enantioselective Microbial Hydrolysis of <i>cis</i> â€2â€Arylcyclopropanecarbonitriles. Chinese Journal of Chemistry, 2001, 19, 113-115.	2.6	10
169	Synthesis, structure and transition metal ion complexation property of lariat azacalix[4]pyridines. Tetrahedron, 2015, 71, 2105-2112.	1.0	10
170	Synthesis and conformational structure of hydrazo-bridged homo calix[2]pyridine[2]triazines. Organic Chemistry Frontiers, 2017, 4, 1425-1429.	2.3	10
171	Domino Reactions of Tertiary Enamides in Organic Synthesis. Synlett, 2021, 32, 1419-1427.	1.0	10
172	1, 1-Enediamines. , 0, , 1303-1363.		9
173	Macrocyclic Aryl–Nickel(II) Complexes: Synthesis, Structure, and Reactivity Studies. Organometallics, 2015, 34, 5167-5174.	1.1	9
174	Synthesis of O ₆ orona[3]arene[3]pyridazines and Their Molecular Recognition Property in Organic and Aqueous Media. Chinese Journal of Chemistry, 2018, 36, 630-634.	2.6	9
175	Copper-Catalyzed N,N-Diarylation of Amides for the Construction of 9,10-Dihydroacridine Structure and Applications in the Synthesis of Diverse Nitrogen-Embedded Polyacenes. Organic Letters, 2020, 22, 5417-5422.	2.4	9
176	A Facile Method for the Synthesis of Novel Quinazolinone Compounds. Synthetic Communications, 1996, 26, 475-482.	1.1	8
177	Enantioselective Biotransformations of Nitriles. Topics in Organometallic Chemistry, 2011, , 105-121.	0.7	8
178	Construction and Multiple Exterior Surface Functionalization of Giant Molecular Cages. European Journal of Organic Chemistry, 2014, 2014, 7895-7905.	1.2	8
179	Synthesis of Quaternaryâ€Carbonâ€Containing and Functionalized Enantiopure Pentanecarboxylic Acids from Biocatalytic Desymmetrization of <i>meso</i> â€Cyclopentaneâ€1,3â€Dicarboxamides. Chemistry - an Asian Journal, 2015, 10, 938-947.	1.7	8
180	Catalytic Asymmetric Tandem Reaction of Tertiary Enamides: Expeditious Synthesis of Pyrrolo[2,1â€ <i>a</i>]isoquinoline Alkaloid Derivatives. Angewandte Chemie, 2016, 128, 3863-3867.	1.6	8

#	Article	IF	CITATIONS
181	Supramolecular chemistry: defined. Supramolecular Chemistry, 2016, 28, 1-3.	1.5	8
182	Biocatalytic Desymmetrization of Prochiral 3â€Aryl and 3â€Arylmethyl Glutaramides: Different Remote Substituent Effect on Catalytic Efficiency and Enantioselectivity. Advanced Synthesis and Catalysis, 2018, 360, 4594-4603.	2.1	8
183	Highly efficient biocatalytic desymmetrization of <i>meso</i> carbocyclic 1,3-dicarboxamides: a versatile route for enantiopure 1,3-disubstituted cyclohexanes and cyclopentanes. Organic Chemistry Frontiers, 2019, 6, 808-812.	2.3	8
184	Oxygen―and Nitrogenâ€Embedded Zigzag Hydrocarbon Belts. Angewandte Chemie, 2020, 132, 23857-23866.	1.6	8
185	Synthesis and Structure of Functionalized Zigzag Hydrocarbon Belts. Angewandte Chemie, 2020, 132, 18308-18312.	1.6	8
186	Synthesis of Heterocyclic Ketene N,S- and N,O-Acetals with Ester Substituent in the Heterocyclic Ring. Synthetic Communications, 1991, 21, 1177-1187.	1.1	7
187	Oligo-m-aniline Foldamers. Tetrahedron Letters, 2012, 53, 6426-6429.	0.7	7
188	Selective Formylation of Azacalixpyridine Macrocycles and Their Transformation to Molecular Semicages. Journal of Organic Chemistry, 2015, 80, 9272-9278.	1.7	7
189	Azacalixaromatics. , 2016, , 363-397.		7
190	Synthesis of hydroxylated azacalix[1]arene[3]pyridines from hydrolysis of high valent arylcopper complexes and conversion to a double azacalix[1]arene[3]pyridine host molecule. Organic Chemistry Frontiers, 2017, 4, 283-287.	2.3	7
191	Construction of the Erythrinane Core Skeleton via Asymmetric Catalytic Cascade Reaction of Tertiary Enamides. Journal of Organic Chemistry, 2020, 85, 13211-13219.	1.7	7
192	A Theoretical Study on the Macrocyclic Strain of Zigzag Molecular Belts. Organic Materials, 2020, 02, 300-305.	1.0	7
193	Multiresponsive Vesicles Composed of Amphiphilic Azacalix[4]pyridine Derivatives. ACS Applied Materials & amp; Interfaces, 2017, 9, 10378-10382.	4.0	6
194	Catalytic Enantioselective Synthesis of 4-Amino-1,2,3,4-tetrahydropyridine Derivatives from Intramolecular Nucleophilic Addition Reaction of Tertiary Enamides. Synlett, 2019, 30, 483-487.	1.0	6
195	Synthesis of Butadiynyl-Strapped Corona[6]arenes and Their Selective Anion Binding Properties. Journal of Organic Chemistry, 2020, 85, 2312-2320.	1.7	6
196	Synthesis of i â€Corona[6]arenes for Selective Anion Binding: Interdependent and Synergistic Anion–΀ and Hydrogenâ€Bond Interactions. Angewandte Chemie, 2020, 132, 23924-23931.	1.6	6
197	Selective Oxidation of Belt[4]arene[4]tropilidene and Its Application to Construct Hydrocarbon Belts of Truncated Cone Structure with Expand Cavity. Organic Letters, 2021, 23, 7259-7263.	2.4	6
198	A Simple and Efficient Chlorination Reaction of Heterocyclic Ketene Aminals. Synthetic Communications, 1999, 29, 4241-4249.	1.1	5

#	Article	IF	CITATIONS
199	Synthesis of functionalized azacalix[3]aromatics from azacalix[4]pyrimidine: unexpected macrocyclic transannular reactions. Tetrahedron Letters, 2014, 55, 3259-3262.	0.7	5
200	Synthesis and Reactions of C4-Symmetric 1,3,5,7(1,3)-Tetrabenzenacyclooctaphane Tetraazide and Tetraamine Derivatives: Toward the Synthesis of Nitrogen-Embedded Zigzag Hydrocarbon Belts. Organic Letters, 2021, 23, 1835-1839.	2.4	5
201	Synthesis of Electronâ€Deficient Corona[5]arenes and Their Selective Complexation with Dihydrogen Phosphate: Cooperative Effects of Anion–l̃€ Interactions. Angewandte Chemie, 2020, 132, 8155-8160.	1.6	5
202	Nucleophilic Reaction of Heterocyclic Enamines with Nitrile imine 1,3-Dipoles. Synthetic Communications, 2000, 30, 3255-3265.	1.1	4
203	Oxacalix[2]arene[2]triazine Derivatives with Halogen Bond Donors: Synthesis, Structure, and Halide Binding in the Solid State. Crystal Growth and Design, 2016, 16, 5460-5465.	1.4	4
204	Synthesis and Structure of Functionalized Homo Heteracalix[2]arene[2]triazines: Effect of All Heteroatom Bridges on Macrocyclic Conformation. Journal of Organic Chemistry, 2018, 83, 3316-3324.	1.7	4
205	Synthesis of oxygen bridged corona[n]arene[n]pyrazines and their fullerene binding property. Supramolecular Chemistry, 2018, 30, 583-588.	1.5	4
206	Synthesis and anion binding properties of phthalimide-containing corona[6]arenes. Beilstein Journal of Organic Chemistry, 2019, 15, 1976-1983.	1.3	4
207	Synthesis of Hydroxylated 3,4-Dihydropyridine-2-ones from Intramolecular Nucleophilic Addition Reaction of Oxirane-Containing Tertiary Enamides. Synlett, 2011, 2011, 927-930.	1.0	3
208	Synthesis and structure of N-methylated azacalix[4]pyridines and azacalix[1]arene[3]pyridines. Tetrahedron Letters, 2017, 58, 3708-3711.	0.7	3
209	Polyfunctionalized biaryls accessed by a one-pot nucleophilic aromatic substitution and sigmatropic rearrangement reaction cascade under mild conditions. Tetrahedron, 2021, 83, 131966.	1.0	3
210	Rücktitelbild: Fluorophores for Excitedâ€State Intramolecular Proton Transfer by an Yttrium Triflate Catalyzed Reaction of Isocyanides with Thiocarboxylic Acids (Angew. Chem. 23/2017). Angewandte Chemie, 2017, 129, 6778-6778.	1.6	2
211	Silverâ€Catalyzed Threeâ€Component 1,1â€Aminoacylation of Homopropargylamines: αâ€Additions for Both Terminal Alkynes and Isocyanides. Angewandte Chemie, 2017, 129, 8066-8070.	1.6	2
212	Hydroxy-Substituted Azacalix[4]Pyridines: Synthesis, Structure, and Construction of Functional Architectures. Frontiers in Chemistry, 2019, 7, 553.	1.8	2
213	Recognition of anions by protonated methylazacalixpyridines. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2009, 4, 307-312.	0.4	1
214	Frontispiece: Construction of Hydrocarbon Nanobelts. Angewandte Chemie - International Edition, 2020, 59, .	7.2	1
215	Rearrangements and Tautomerizations of Enamines. , 0, , 889-922.		0
216	Frontispiz: Construction of Hydrocarbon Nanobelts. Angewandte Chemie, 2020, 132, .	1.6	0

#	Article	IF	CITATIONS
217	Innenrücktitelbild: Oxygen―and Nitrogenâ€Embedded Zigzag Hydrocarbon Belts (Angew. Chem. 52/2020). Angewandte Chemie, 2020, 132, 24111-24111.	1.6	Ο