Viktoria Gudi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10104631/publications.pdf

Version: 2024-02-01

361413 315739 2,075 38 20 citations h-index papers

g-index 39 39 39 2802 docs citations times ranked citing authors all docs

38

#	Article	IF	CITATIONS
1	Astroglial and oligodendroglial markers in the cuprizone animal model for de- and remyelination. Histochemistry and Cell Biology, 2022, 158, 15-38.	1.7	12
2	Cuprizoneâ€induced demyelination triggers a <scp>CD8</scp> â€pronounced T cell recruitment. Glia, 2021, 69, 925-942.	4.9	24
3	Regenerative Effects of CDP-Choline: A Dose-Dependent Study in the Toxic Cuprizone Model of De- and Remyelination. Pharmaceuticals, 2021, 14, 1156.	3.8	4
4	Delayed Demyelination and Impaired Remyelination in Aged Mice in the Cuprizone Model. Cells, 2020, 9, 945.	4.1	26
5	FoxP3 deficiency causes no inflammation or neurodegeneration in the murine brain. Journal of Neuroimmunology, 2020, 342, 577216.	2.3	3
6	Fumaric Acids Do Not Directly Influence Gene Expression of Neuroprotective Factors in Highly Purified Rodent Astrocytes. Brain Sciences, 2019, 9, 241.	2.3	5
7	Investigation of Neuregulin-1 and Clial Cell-Derived Neurotrophic Factor in Rodent Astrocytes and Microglia. Journal of Molecular Neuroscience, 2019, 67, 484-493.	2.3	11
8	Polarized microglia do not influence oligodendrocyte lineage cells via astrocytes. International Journal of Developmental Neuroscience, 2019, 77, 39-47.	1.6	5
9	HSV-1 triggers paracrine fibroblast growth factor response from cortical brain cells via immediate-early protein ICPO. Journal of Neuroinflammation, 2019, 16, 248.	7.2	16
10	Type I Interferon Receptor Signaling of Neurons and Astrocytes Regulates Microglia Activation during Viral Encephalitis. Cell Reports, 2018, 25, 118-129.e4.	6.4	84
11	The Effect of Stereotactic Injections on Demyelination and Remyelination: a Study in the Cuprizone Model. Journal of Molecular Neuroscience, 2017, 61, 479-488.	2.3	21
12	Investigation of Cuprizone Inactivation by Temperature. Neurotoxicity Research, 2017, 31, 570-577.	2.7	6
13	Polysialylation at Early Stages of Oligodendrocyte Differentiation Promotes Myelin Repair. Journal of Neuroscience, 2017, 37, 8131-8141.	3.6	26
14	Synaptophysin Is a Reliable Marker for Axonal Damage. Journal of Neuropathology and Experimental Neurology, 2017, 76, 109-125.	1.7	61
15	The quality of cortical network function recovery depends on localization and degree of axonal demyelination. Brain, Behavior, and Immunity, 2017, 59, 103-117.	4.1	25
16	Effectors of Th1 and Th17 cells act on astrocytes and augment their neuroinflammatory properties. Journal of Neuroinflammation, 2017, 14, 204.	7.2	88
17	In vitro evaluation of physiologically relevant concentrations of teriflunomide on activation and proliferation of primary rodent microglia. Journal of Neuroinflammation, 2016, 13, 250.	7.2	36
18	Cytokine regulation by modulation of the NMDA receptor on astrocytes. Neuroscience Letters, 2016, 629, 227-233.	2.1	18

#	Article	IF	Citations
19	Mesenchymal stem cells require the peripheral immune system for immunomodulating effects in animal models of multiple sclerosis. Neural Regeneration Research, 2016, 11, 90.	3.0	2
20	The antiviral drug ganciclovir does not inhibit microglial proliferation and activation. Scientific Reports, 2015, 5, 14935.	3.3	13
21	Effect of FTY720-phosphate on the expression of inflammation-associated molecules in astrocytes in vitro. Molecular Medicine Reports, 2015, 12, 6171-6177.	2.4	23
22	Reply: Beneficial effects of exogenous CDP-choline (citicoline) in EAE. Brain, 2015, 138, e389-e389.	7.6	1
23	Mesenchymal stem cells do not exert direct beneficial effects on CNS remyelination in the absence of the peripheral immune system. Brain, Behavior, and Immunity, 2015, 50, 155-165.	4.1	25
24	Pivotal role of choline metabolites in remyelination. Brain, 2015, 138, 398-413.	7.6	80
25	Oligodendroglial markers in the cuprizone model of CNS de- and remyelination. Histology and Histopathology, 2015, 30, 1455-64.	0.7	10
26	Glial response during cuprizone-induced de- and remyelination in the CNS: lessons learned. Frontiers in Cellular Neuroscience, 2014, 8, 73.	3.7	293
27	Limited role of regulatory T cells during acute Theiler virus-induced encephalitis in resistant C57BL/6 mice. Journal of Neuroinflammation, 2014, 11, 180.	7.2	16
28	A pivotal role of nonmuscle myosin II during microglial activation. Experimental Neurology, 2014, 261, 666-676.	4.1	15
29	Longâ€term impact of neonatal inflammation on demyelination and remyelination in the central nervous system. Glia, 2014, 62, 1659-1670.	4.9	18
30	Effector molecules released by Th1 but not Th17 cells drive an M1 response in microglia. Brain, Behavior, and Immunity, 2014, 37, 248-259.	4.1	65
31	Astrocytes regulate myelin clearance through recruitment of microglia during cuprizone-induced demyelination. Brain, 2013, 136, 147-167.	7.6	298
32	Characterisation of microglia during de- and remyelination: Can they create a repair promoting environment?. Neurobiology of Disease, 2012, 45, 519-528.	4.4	161
33	Lipopolysaccharide delays demyelination and promotes oligodendrocyte precursor proliferation in the central nervous system. Brain, Behavior, and Immunity, 2011, 25, 1592-1606.	4.1	25
34	Matrix Metalloproteinases and Their Tissue Inhibitors in Cuprizone-Induced Demyelination and Remyelination of Brain White and Gray Matter. Journal of Neuropathology and Experimental Neurology, 2011, 70, 758-769.	1.7	40
35	Spatial and Temporal Profiles of Growth Factor Expression during CNS Demyelination Reveal the Dynamics of Repair Priming. PLoS ONE, 2011, 6, e22623.	2.5	80
36	De- and remyelination in the CNS white and grey matter induced by cuprizone: the old, the new, and the unexpected. Histology and Histopathology, 2011, 26, 1585-97.	0.7	169

VIKTORIA GUDI

#	Article	IF	CITATION
37	Effects of Fumaric Acids on Cuprizone Induced Central Nervous System De- and Remyelination in the Mouse. PLoS ONE, 2010, 5, e11769.	2.5	71
38	Regional differences between grey and white matter in cuprizone induced demyelination. Brain Research, 2009, 1283, 127-138.	2.2	199