Weilie Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1010324/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rational design of type-II nano-heterojunctions for nanoscale optoelectronics. Materials Today Physics, 2020, 15, 100262.	6.0	74
2	Photocurrent Enhanced in UV-vis-NIR Photodetector Based on CdSe/CdTe Core/Shell Nanowire Arrays by Piezo-Phototronic Effect. ACS Photonics, 2020, 7, 1461-1467.	6.6	28
3	Synthesis of FeP nanotube arrays as negative electrode for solid-state asymmetric supercapacitor. Nanotechnology, 2019, 30, 295401.	2.6	27
4	PEDOT coated iron phosphide nanorod arrays as high-performance supercapacitor negative electrodes. Chemical Communications, 2018, 54, 794-797.	4.1	52
5	Coupling Effect of Magnetic Fields on Piezotronic and Piezophototronic Properties of ZnO and ZnO/Co ₃ O ₄ Core/Shell Nanowire Arrays. ACS Applied Nano Materials, 2018, 1, 6897-6903.	5.0	8
6	Three-Dimensional Cobalt Phosphide Nanowire Arrays as Negative Electrode Material for Flexible Solid-State Asymmetric Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 16986-16994.	8.0	113
7	Light-Effect Transistor (LET) with Multiple Independent Gating Controls for Optical Logic Gates and Optical Amplification. Frontiers in Physics, 2016, 4, .	2.1	16
8	Piezophototronic Effect Enhanced UV/Visible Photodetector Based on ZnO/ZnSe Heterostructure Core/Shell Nanowire Array and Its Selfâ€Powered Performance. Advanced Electronic Materials, 2016, 2, 1600242.	5.1	36
9	Piezo-phototronic Effect Enhanced UV/Visible Photodetector Based on Fully Wide Band Gap Type-II ZnO/ZnS Core/Shell Nanowire Array. ACS Nano, 2015, 9, 6419-6427.	14.6	232
10	Enhanced Broad Band Photodetection through Piezoâ€Phototronic Effect in CdSe/ZnTe Core/Shell Nanowire Array. Advanced Electronic Materials, 2015, 1, 1400050.	5.1	71
11	Heterojunction formation between zinc oxide nanowire array and Cu2ZnSnS4 nanoparticles for 3-dimensional nanostructured solar cells. , 2015, , .		0
12	Nearly lattice matched all wurtzite CdSe/ZnTe type II core–shell nanowires with epitaxial interfaces for photovoltaics. Nanoscale, 2014, 6, 3679-3685.	5.6	34
13	Cu2ZnSnS4 nanoplate arrays synthesized by pulsed laser deposition with high catalytic activity as counter electrodes for dye-sensitized solar cell applications. Journal of Materials Chemistry A, 2013, 1, 15517.	10.3	44
14	Vertically Aligned CdSe Nanowire Arrays for Energy Harvesting and Piezotronic Devices. ACS Nano, 2012, 6, 6478-6482.	14.6	91
15	Dual-functional ZnO nanorod aggregates as scattering layer in the photoanode for dye-sensitized solar cells. Chemical Communications, 2011, 47, 11519.	4.1	49
16	Vertically Aligned ZnO Nanorod Arrays Coated with \$hbox{SnO}_{f 2}\$/Noble Metal Nanoparticles for Highly Sensitive and Selective Gas Detection. IEEE Nanotechnology Magazine, 2011, 10, 968-974.	2.0	27
17	Visible-light-response iodine-doped titanium dioxide nanocrystals for dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21, 3877.	6.7	73
18	Three-Dimensional Photovoltaic Devices Based on Vertically Aligned Nanowire Array. , 2011, , 447-475.		0

WEILIE ZHOU

#	Article	IF	CITATIONS
19	Axial growth of Zn2GeO4/ZnO nanowire heterojunction using chemical vapor deposition. Journal of Crystal Growth, 2011, 316, 46-50.	1.5	16
20	Facile Route to Polycrystalline Pd/\${m SnO}_{2}\$ Nanowires Using ZnO-Nanowire Templates for Gas-Sensing Applications. IEEE Nanotechnology Magazine, 2010, 9, 634-639.	2.0	14
21	Direct Growth of Highly Mismatched Type II ZnO/ZnSe Core/Shell Nanowire Arrays on Transparent Conducting Oxide Substrates for Solar Cell Applications. Advanced Materials, 2008, 20, 3248-3253.	21.0	330
22	Drug-loaded, magnetic, hollow silica nanocomposites for nanomedicine. Nanomedicine: Nanotechnology, Biology, and Medicine, 2005, 1, 233-237.	3.3	31