$\bar{D}\bar{D}_{J}\bar{D}^{0}\bar{D}^{3}\!/_{4}\bar{D}^{*}\bar{D}^{1}\bar{D}^{1}\bar{D}^{1}\!/_{2}\bar{D}\mu\tilde{N}\bar{D}^{3}\!/_{4}\bar{D}^{2}$

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10102824/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Derivatives of closo-decaborate anion [B10H10]2â^' with exo-polyhedral substituents. Russian Journal of Inorganic Chemistry, 2010, 55, 2089-2127.	1.3	121
2	Promising ultra-high-temperature ceramic materials for aerospace applications. Russian Journal of Inorganic Chemistry, 2013, 58, 1669-1693.	1.3	113
3	Derivatives of the closo-dodecaborate anion and their application in medicine. Russian Chemical Bulletin, 2002, 51, 1362-1374.	1.5	94
4	Specifics of pyrohydrolytic and solid-phase syntheses of solid solutions in the (MgGa2O4) x (MgFe2O4)1 â^' x system. Russian Journal of Inorganic Chemistry, 2010, 55, 427-429.	1.3	91
5	Systematical analysis of chemical methods in metal nanoparticles synthesis. Theoretical Foundations of Chemical Engineering, 2016, 50, 59-66.	0.7	91
6	Coordination compounds of electron-deficient boron cluster anions B n H n 2â^' (n = 6, 10, 12). Russian Journal of Inorganic Chemistry, 2010, 55, 2148-2202.	1.3	75
7	Silver and Copper Complexes with closo-Polyhedral Borane, Carborane and Metallacarborane Anions: Synthesis and X-ray Structure. Crystals, 2016, 6, 60.	2.2	71
8	Synthesis of highly dispersed super-refractory tantalum-zirconium carbide Ta4ZrC5 and tantalum-hafnium carbide Ta4HfC5 via sol-gel technology. Russian Journal of Inorganic Chemistry, 2011, 56, 1681-1687.	1.3	66
9	Nucleophilicity of Oximes Based upon Addition to a Nitriliumcloso-Decaborate Cluster. Organometallics, 2016, 35, 3612-3623.	2.3	52
10	Mechanism of generation of closo-decaborato amidrazones. Intramolecular non-covalent B–Hâ‹-ï€(Ph) interaction determines stabilization of the configuration around the amidrazone Cî€N bond. New Journal of Chemistry, 2018, 42, 8693-8703.	2.8	52
11	The system LaNi5î—,H2. Journal of the Less Common Metals, 1988, 144, 23-30.	0.8	45
12	Synthesis, Vaporization and Thermodynamic Properties of Superfine Nd ₂ Hf ₂ O ₇ and Gd ₂ Hf ₂ O ₇ . European Journal of Inorganic Chemistry, 2013, 2013, 4636-4644.	2.0	44
13	Theoretical QTAIM, ELI-D, and Hirshfeld Surface Analysis of the Cu–(H)B Interaction in [Cu ₂ (<i>bipy</i>) ₂ B ₁₀ H ₁₀]. Journal of Physical Chemistry A, 2013, 117, 13138-13150.	2.5	43
14	Coordination chemistry of iron triad metals with organic N-donor ligands and boron cluster anions [B10H10]2â^', [B12H12]2â^', and [B10Cl10]2â^': Complexation and accompanying processes. Russian Journal of Inorganic Chemistry, 2017, 62, 1673-1702.	1.3	43
15	Gas-sensing properties of nanostructured CeO2-xZrO2 thin films obtained by the sol-gel method. Journal of Alloys and Compounds, 2019, 773, 1023-1032.	5.5	40
16	Low-temperature synthesis of nanodispersed titanium, zirconium, and hafnium carbides. Russian Journal of Inorganic Chemistry, 2011, 56, 661-672.	1.3	39
17	Reactivity of boron cluster anions [B10H10]2â^', [B10Cl10]2â^' and [B12H12]2â^' in cobalt(II)/cobalt(III) complexation with 1,10-phenanthroline. Inorganica Chimica Acta, 2015, 428, 154-162.	2.4	38
18	Pen plotter printing of Co3O4 thin films: features of the microstructure, optical, electrophysical and gas-sensing properties. Journal of Alloys and Compounds, 2020, 832, 154957.	5.5	38

#	Article	IF	CITATIONS
19	Synthesis of BaCe0.9xZrxY0.1O3 nanopowders and the study of proton conductors fabricated on their basis by low-temperature spark plasma sintering. International Journal of Hydrogen Energy, 2019, 44, 20345-20354.	7.1	37
20	Pen plotter printing of ITO thin film as a highly CO sensitive component of a resistive gas sensor. Talanta, 2021, 221, 121455.	5.5	37
21	Copper(I), copper(II), and heterovalent copper(I,II) complexes with 1,10-phenanthroline and the closo -decaborate anion. Inorganica Chimica Acta, 2015, 430, 74-81.	2.4	36
22	Properties of Mg(Fe1 â^' x Ga x)2O4 + δ solid solutions in stable and metastable states. Inorganic Materials, 2010, 46, 429-433.	0.8	35
23	An interaction of the functionalized closo -borates with albumins: The protein fluorescence quenching and calorimetry study. Journal of Luminescence, 2016, 169, 51-60.	3.1	35
24	1,3-Dipolar Cycloaddition of Nitrones to a Nitrile Functionality in <i>closo</i> -Decaborate Clusters: A Novel Reactivity Mode for the Borylated C≡N Group. Organometallics, 2012, 31, 1716-1724.	2.3	34
25	Synthesis and reactivity of closo -decaborate anion derivatives with multiple carbon–oxygen bonds. Inorganic Chemistry Communication, 2014, 50, 28-30.	3.9	34
26	Low-temperature synthesis of TaC through transparent tantalum-carbon containing gel. Inorganic Materials, 2010, 46, 495-500.	0.8	33
27	Behavior of a sample of the ceramic material HfB2–SiC (45 vol %) in the flow of dissociated air and the analysis of the emission spectrum of the boundary layer above its surface. Russian Journal of Inorganic Chemistry, 2015, 60, 1360-1373.	1.3	32
28	Microstructural, electrophysical and gas-sensing properties of CeO2–Y2O3 thin films obtained by the sol-gel process. Ceramics International, 2020, 46, 121-131.	4.8	32
29	Microplotter-Printed On-Chip Combinatorial Library of Ink-Derived Multiple Metal Oxides as an "Electronic Olfaction―Unit. ACS Applied Materials & Interfaces, 2020, 12, 56135-56150.	8.0	32
30	Structural Diversity of Cationic Copper(II) Complexes with Neutral Nitrogen-Containing Organic Ligands in Compounds with Boron Cluster Anions and Their Derivatives (Review). Russian Journal of Inorganic Chemistry, 2020, 65, 514-534.	1.3	32
31	Synthesis and Composition of Compounds Containing the B ₁₀ H ⁻ ₁₁ Anion. Inorganic Materials, 2004, 40, 144-146.	0.8	31
32	Reactions of nucleophilic addition of primary amines to the nitrilium derivative of the closo-decaborate anion [2-B10H9(N≡CCH3)]â^'. Russian Journal of Inorganic Chemistry, 2011, 56, 847-855.	1.3	31
33	Nickel(II) complexes with nitrogen-containing derivatives of the closo-decaborate anion. Russian Chemical Bulletin, 2014, 63, 187-193.	1.5	31
34	Production of HfB2–SiC (10–65 vol % SiC) Ultra-High-Temperature Ceramics by Hot Pressing of HfB2–(SiO2–C) Composite Powder Synthesized by the Sol–Gel Method. Russian Journal of Inorganic Chemistry, 2018, 63, 1-15.	1.3	31
35	Borylated Tetrazoles from Cycloaddition of Azide Anions to Nitrilium Derivatives of <i>closo</i> -Decaborate Clusters. Organometallics, 2013, 32, 6576-6586.	2.3	30
36	Production of ultrahigh temperature composite materials HfB2-SiC and the study of their behavior under the action of a dissociated air flow. Russian Journal of Inorganic Chemistry, 2013, 58, 1269-1276.	1.3	30

#	Article	IF	CITATIONS
37	Synthesis, vaporization and thermodynamics of ceramic powders based on the Y2O3–ZrO2–HfO2 system. Materials Chemistry and Physics, 2015, 153, 78-87.	4.0	30
38	The new approach to formation of exo boron–oxygen bonds from the decahydro-closo-decaborate(2-) anion. Polyhedron, 2015, 101, 215-222.	2.2	30
39	Oxygen detection using nanostructured TiO2 thin films obtained by the molecular layering method. Applied Surface Science, 2019, 463, 197-202.	6.1	30
40	Solidâ€State Reactions of Eicosaborate [B ₂₀ H ₁₈] ^{2â^'} Salts and Complexes. Chemistry - A European Journal, 2017, 23, 16819-16828.	3.3	30
41	exo-Polyhedral substitution in B10H 10 2â^' anion induced by redox reactions in the Cu(I)-B10H 10 2â^' -L system (L = bipy, bpa). Doklady Chemistry, 2011, 440, 253-256.	0.9	29
42	HfB2-SiC (10–20 vol %) ceramic materials: Manufacture and behavior under long-term exposure to dissociated air streams. Russian Journal of Inorganic Chemistry, 2014, 59, 1361-1382.	1.3	29
43	HfB2-SiC (45 vol %) ceramic material: Manufacture and behavior under long-term exposure to dissociated air jet flow. Russian Journal of Inorganic Chemistry, 2014, 59, 1298-1311.	1.3	29
44	Behavior of HfB2-SiC (10, 15, and 20 vol %) ceramic materials in high-enthalpy air flows. Russian Journal of Inorganic Chemistry, 2016, 61, 1203-1218.	1.3	29
45	Preparation of porous SiC-ceramics by sol–gel and spark plasma sintering. Journal of Sol-Gel Science and Technology, 2017, 82, 748-759.	2.4	29
46	Study of the Thermal Behavior of Wedge-Shaped Samples of HfB2–45 vol % SiC Ultra-High-Temperature Composite in a High-Enthalpy Air Flow. Russian Journal of Inorganic Chemistry, 2018, 63, 421-432.	1.3	29
47	Anionic silver(I) complexes with closo-dodecaborate anion. Russian Journal of Inorganic Chemistry, 2008, 53, 1024-1033.	1.3	28
48	Redox, complexation, and substitution reactions in [Cu2B10H10]-2,2′-bipyridylamine-CH3CN system. Russian Journal of Inorganic Chemistry, 2013, 58, 657-663.	1.3	28
49	Reversible single-crystal-to-single-crystal photoisomerization of a silver(<scp>i</scp>) macropolyhedral borane. CrystEngComm, 2015, 17, 8870-8875.	2.6	28
50	Isomerism in complexes with the decahydro- closo -decaborate anion. Polyhedron, 2016, 105, 205-221.	2.2	28
51	Vaporization and thermodynamic properties of lanthanum hafnate. Journal of Alloys and Compounds, 2018, 735, 2348-2355.	5.5	28
52	Impact of a Supersonic Dissociated Air Flow on the Surface of HfB2–30 vol % SiC UHTC Produced by the Sol–Gel Method. Russian Journal of Inorganic Chemistry, 2018, 63, 1484-1493.	1.3	28
53	Complexation and exopolyhedral substitution of the terminal hydrogen atoms in the decahydro-closo-decaborate anion in the presence of cobalt(II). Polyhedron, 2019, 162, 65-70.	2.2	28
54	Ink-jet printing of a TiO2–10%ZrO2 thin film for oxygen detection using a solution of metal alkoxoacetylacetonates. Thin Solid Films, 2019, 670, 46-53.	1.8	28

#	Article	IF	CITATIONS
55	Microplotter printing of planar solid electrolytes in the CeO2–Y2O3 system. Journal of Colloid and Interface Science, 2021, 588, 209-220.	9.4	28
56	Specific interactions in metal salts and complexes with cluster boron anions B n H n 2â^' (n = 6, 10, 12). Russian Journal of Inorganic Chemistry, 2011, 56, 687-697.	1.3	27
57	Secondary interactions in decachloro-closo-decaborates R2[B10Cl10] (R = Et3NH+, Ph4P+, and) Tj ETQq1 1 0.784	314 rgBT 2.4	Qyerlock 1 27
58	The method for synthesis of 2-sulfanyl closo -decaborate anion and its S -alkyl and S -acyl derivatives. Journal of Organometallic Chemistry, 2017, 828, 106-115.	1.8	27
59	Nucleophilic addition of alcohols to the C-N multiple bonds of the nitrilium substituent in the anion [2-B10H9(N≡CMe)]â^'. Russian Chemical Bulletin, 2009, 58, 1694-1700.	1.5	26
60	First heterovalent copper complex with 2,2′-dipyridyl and closo-decaborate anion B10H 10 2â^'. Doklady Chemistry, 2011, 437, 79-81.	0.9	26
61	Coupling of Azomethine Ylides with Nitrilium Derivatives of <i>closo</i> â€Decaborate Clusters: A Synthetic and Theoretical Study. ChemPlusChem, 2012, 77, 1075-1086.	2.8	25
62	Synthesis and structure of disubstituted closo-decaborate anion derivatives Ph4P(2,6-B10H8O2CCH3) and 1,2-B10H8Phen with bifunctional O,O'- and N,N'-substituents. Doklady Chemistry, 2013, 452, 240-24	4 ^{0.9}	25
63	[Co(solv)6][B10H10] (solv = DMF and DMSO) for low-temperature synthesis of borides. Russian Journal of Inorganic Chemistry, 2016, 61, 1125-1134.	1.3	25
64	Decachloro-closo-decaborate anion in copper(II) complexation reactions with N-donor ligands: 35Cl NQR and X-ray studies. Polyhedron, 2017, 127, 238-247.	2.2	25
65	Nucleophilic addition of alcohols to anionic [2-B10H9NCR]â^' (R = Et, t-Bu): An approach to producing new borylated imidates. Polyhedron, 2017, 123, 176-183.	2.2	25
66	Synthesis and stability studies of derivatives of the 2-sulfanyl-closo-decaborate anion [2-B10H9SH]2â^'. Inorganica Chimica Acta, 2018, 477, 277-283.	2.4	25
67	Behavior of HfB2–30 vol% SiC UHTC obtained by sol–gel approach in the supersonic airflow. Journal of Sol-Gel Science and Technology, 2019, 92, 386-397.	2.4	25
68	Isomerism in Salts and Complexes with Boron Cluster Anions [B10H10]2– and [B20H18]2–. Russian Journal of Inorganic Chemistry, 2020, 65, 335-358.	1.3	25
69	Synthesis of ultrafine yttrium aluminum garnet using sol-gel technology. Russian Journal of Inorganic Chemistry, 2012, 57, 1521-1528.	1.3	24
70	Synthesis of amino-containing meso-aryl-substituted porphyrins and their conjugates with the closo-decaborate anion. Russian Chemical Bulletin, 2014, 63, 194-200.	1.5	24
71	Interaction between a Decahydro-closo-Decaborate(2–) Anion and Aliphatic Carboxylic Acids. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2001, 27, 613-619.	1.0	23
72	Synthesis of nanocrystalline silicon carbide using the sol-gel technique. Russian Journal of Inorganic Chemistry, 2013, 58, 1143-1151.	1.3	23

#	Article	IF	CITATIONS
73	Zinc oxide obtained by the solvothermal method with high sensitivity and selectivity to nitrogen dioxide. Ceramics International, 2020, 46, 7756-7766.	4.8	23
74	Experimental and theoretical determination of the saturation vapor pressure of silicon in a wide range of temperatures. Russian Journal of Inorganic Chemistry, 2010, 55, 2073-2088.	1.3	22
75	Synthesis of Finely Dispersed La2Zr2O7, La2Hf2O7, Gd2Zr2O7 and Gd2Hf2O7 Oxides. Mendeleev Communications, 2013, 23, 17-18.	1.6	22
76	The chemistry of the octahydrotriborate anion [B3H8]â^'. Russian Journal of Inorganic Chemistry, 2014, 59, 1539-1555.	1.3	22
77	Nickel(II) complexes with boron cluster anions [B n H n]2– (n = 10, 12) and azaheterocyclic ligands L (L) Tj ETQ	q1_1 0.78 1.3	4314 rgBT
78	<i>closo</i> -Dodecaborate Intercalated Yttrium Hydroxide as a First Example of Boron Cluster Anion-Containing Layered Inorganic Substances. Inorganic Chemistry, 2017, 56, 3421-3428.	4.0	22
79	Thin films of the composition 8% Y2O3–92% ZrO2 (8YSZ) as gas-sensing materials for oxygen detection. Russian Journal of Inorganic Chemistry, 2017, 62, 695-701.	1.3	22
80	ZrB2/HfB2–SiC Ceramics Modified by Refractory Carbides: An Overview. Russian Journal of Inorganic Chemistry, 2019, 64, 1697-1725.	1.3	22
81	Solvent-Induced Encapsulation of Cobalt(II) Ion by a Boron-Capped tris-Pyrazoloximate. Inorganic Chemistry, 2020, 59, 5845-5853.	4.0	22
82	Cobalt(II) and nickel(II) complexes with 1-methyl-2-pyridin-2-yl-1H- and 1-methyl-2-phenyliminomethyl-1H-benzimidazoles and the closo-decaborate anion. Russian Journal of Inorganic Chemistry, 2015, 60, 817-822.	1.3	21
83	Reactions of the [B10H10]2a^ anion with nucleophiles in the presence of halides of group IIIA and IVB elements. Russian Journal of Inorganic Chemistry, 2015, 60, 776-785.	1.3	21
84	Chaos control in the fractional order logistic map via impulses. Nonlinear Dynamics, 2019, 98, 1219-1230.	5.2	21
85	Vaporization of molecular titanium coordination compounds—a structural–thermochemical approach. Thermochimica Acta, 2002, 381, 173-180.	2.7	20
86	Cleavage of the cyclic substituent in the [B10H9O2C4H8]â^', [B10H9OC4H8]â^', and [B10H9OC5H10]â^' anions upon the interaction with negatively charged N-nucleophiles. Russian Journal of Inorganic Chemistry, 2011, 56, 1549-1554.	1.3	20
87	Tetranuclear hydroxo-bridged copper(II) cluster of the Z type: Preparation and structural and		

#	Article	IF	CITATIONS
91	ZrB2/HfB2–SiC Ultra-High-Temperature Ceramic Materials Modified by Carbon Components: The Review. Russian Journal of Inorganic Chemistry, 2018, 63, 1772-1795.	1.3	20
92	Structure and magnetic properties of trinuclear copper(II) complex [Cu 3 (bipy) 6 (μ 3 -CO 3)][B 12 H 12] 2 ·4.5DMF·2H 2 O. Inorganica Chimica Acta, 2018, 479, 249-253.	2.4	20
93	Production of 8%Y2O3-92%ZrO2 (8YSZ) thin films by sol-gel technology. Russian Journal of Inorganic Chemistry, 2015, 60, 795-803.	1.3	19
94	Glycol–citrate synthesis of ultrafine lanthanum zirconate. Russian Journal of Inorganic Chemistry, 2015, 60, 1452-1458.	1.3	19
95	Silver(I) and Copper(I) Complexation with Decachloro-Closo-Decaborate Anion. Crystals, 2020, 10, 389.	2.2	19
96	Secondary interactions in decachloro-closo-decaborates of alkali metals M2[B10Cl10] (M = K+ and) Tj ETQq0 0 () rgBT /Ov	erlock 10 Tf 5
97	Impact of a Subsonic Dissociated Air Flow on the Surface of HfB2–30 vol % SiC UHTC Produced by the Sol–Gel Method. Russian Journal of Inorganic Chemistry, 2018, 63, 1345-1355.	1.3	18
98	Obtaining of NiO Nanosheets by a Combination of Sol–Gel Technology and Hydrothermal Treatment Using Nickel Acetylacetonate as a Precursor. Russian Journal of Inorganic Chemistry, 2019, 64, 1753-1757.	1.3	18
99	Synthesis and Physicochemical Properties of Binary Cobalt(II) Borides. Thermal Reduction of Precursor Complexes [CoLn][B10H10] (LÂ= H2O, n = 6; N2H4, n = 3). Russian Journal of Inorganic Chemistry, 2019, 64, 1325-1334.	1.3	18
100	Zinc(II) and cadmium(II) complexes with the decahydro-closo-decaborate anion and phenyl-containing benzimidazole derivatives with linker N N or C N group. Polyhedron, 2021, 194, 114902.	2.2	18
101	Oxidation of HfB2-SiC-Ta4HfC5 ceramic material by a supersonic flow of dissociated air. Journal of the European Ceramic Society, 2021, 41, 1088-1098.	5.7	18
102	Synthesis of New Bioinorganic Systems Based on Nitrilium Derivatives of closo-Decaborate Anion and meso-Arylporphyrins with Pendant Amino Groups. Macroheterocycles, 2017, 10, 505-509.	0.5	18
103	Decahydro-closo-decaborate Anion B10H2–10as an Acido Lidand in Copper(I) Complexes. Doklady Chemistry, 2001, 378, 139-142.	0.9	17
104	Copper(I) coordination compounds with closo-dodecaborate anion. Russian Journal of Inorganic Chemistry, 2006, 51, 1723-1727.	1.3	17
105	Selectivity problem of SnO2 based materials in the presence of water vapors. Sensors and Actuators B: Chemical, 2012, 170, 51-59.	7.8	17
106	Synthesis, vaporization, and thermodynamics of ultrafine Nd2Hf2O7 powders. Russian Journal of Inorganic Chemistry, 2013, 58, 1-8.	1.3	17
107	Synthesis and structure of [NiL6][B10H10] (L = DMF or DMSO) as precursors for solid-phase synthesis of nickel(II) coordination compounds. Inorganica Chimica Acta, 2016, 451, 129-134.	2.4	17
108	Primary hyperparathyroidism in young patients in Russia: high frequency of hyperparathyroidism-jaw tumor syndrome. Endocrine Connections, 2017, 6, 557-565.	1.9	17

#	Article	IF	CITATIONS
109	Synthesis and Structure of Mononuclear Copper(II) Complexes with Azaheterocyclic Ligands L (L =) Tj ETQq1 1 Inorganic Chemistry, 2019, 64, 1210-1219.	0.784314 1.3	† rgBT /Overloc 17
110	Gas-sensing properties of nanostructured TiO2–xZrO2 thin films obtained by the sol–gel method. Journal of Sol-Gel Science and Technology, 2019, 92, 415-426.	2.4	17
111	Synthesis of One-Dimensional Nanostructures of CeO2–10% Y2O3 Oxide by Programmed Coprecipitation in the Presence of Polyvinyl Alcohol. Russian Journal of Inorganic Chemistry, 2019, 64, 1475-1481.	1.3	17
112	Noncovalent Interactions in Compounds Based on Perchlorinated Boron Cluster as Monitored by 35Cl NQR (Review). Russian Journal of Inorganic Chemistry, 2020, 65, 546-566.	1.3	17
113	Title is missing!. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2001, 27, 605-612.	1.0	16
114	Crystal structure of (μ5-decahydro-closo-decaborato) (μ2-O-dimethylformamide)disilver(I) [Ag2(B10H10)(DMF)]. Crystallography Reports, 2008, 53, 253-256.	0.6	16
115	Behavior of dodecahydro-closo-dodecaborate anion B12H 12 2â^' in reaction with Au(Ph3P)Cl. Russian Journal of Inorganic Chemistry, 2011, 56, 524-529.	1.3	16
116	[2,6(9)-B10H8>(O)2CCH3]â^' and [2,7(8)-B10H8(OC(O)CH3)2]2â^' derivatives in synthesis of position isomer of the [B10H8(OC(O)CH3)(OH)]2âr' anion with the 2,6(9)- and 2,7(8)-arrangement of functional groups. Russian Journal of Inorganic Chemistry, 2014, 59, 1247-1258.	`S 1.3	16
117	Synthesis and magnetic properties of iron(II) closo-borate complexes with tris(3,5-dimethylpyrazol-1-yl)methane. Russian Journal of Inorganic Chemistry, 2015, 60, 786-789.	1.3	16
118	Preparation of high-porous SiC ceramics from polymeric composites based on diatomite powder. Journal of Materials Science, 2015, 50, 733-744.	3.7	16
119	Preparation of nanostructured thin films of yttrium aluminum garnet (Y3Al5O12) by Sol—Gel technology. Russian Journal of Inorganic Chemistry, 2016, 61, 667-673.	1.3	16
120	Phase equilibria involving solid solutions in the Li–Mn–O system. Russian Journal of Inorganic Chemistry, 2017, 62, 551-557.	1.3	16
121	Structural Diversity of Dimer Clusters Based on the Octadecahydro-Eicosaborate Anion. Journal of Structural Chemistry, 2019, 60, 692-712.	1.0	16
122	Nucleophilic Addition Reaction of Secondary Amines to Acetonitrilium closo-Decaborate [2-B10H9NCCH3]–. Russian Journal of Inorganic Chemistry, 2019, 64, 841-846.	1.3	16
123	New Synthesis Method of N-Monosubstituted Ammonium-closo-Decaborates. Journal of Cluster Science, 2019, 30, 1327-1333.	3.3	16
124	Synthesis of 1-Naphtylnitrilium closo-Decaborate and Amino Acid Conjugates and Their Photophysical Properties. Russian Journal of Inorganic Chemistry, 2019, 64, 1750-1752.	1.3	16
125	Synthesis, structure, and physicochemical properties of triply-bridged binuclear copper(II) complex [Cu2Phen2(µ-CH3CO2)2(µ-OH)]2[B10Cl10]. Inorganica Chimica Acta, 2019, 487, 208-213. 	2.4	16
126	The effects of subsonic and supersonic dissociated air flow on the surface of ultra-high-temperature HfB2-30 vol% SiC ceramics obtained using the sol-gel method. Journal of the European Ceramic Society, 2020, 40, 1093-1102.	5.7	16

#	Article	IF	CITATIONS
127	The method for synthesis of 2-sulfonium closo-decaborate anions derivatives with exo-polyhedral aminogroups. Inorganica Chimica Acta, 2020, 507, 119589.	2.4	16
128	Aminoguanidinium closo-Borates and Their Reactions with Copper(II) Salts in Aqueous Solutions. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2001, 27, 373-376.	1.0	15
129	Thermodynamic Analysis of the Production of Silicon Carbide via Silicon Dioxide and Carbon. Materials Science Forum, 2004, 457-460, 59-62.	0.3	15
130	The isomorphous substitution of 2H+ for the Cu2+ cation in the complex of bis(aminoguanidine)copper(II): Crystal structures of (Cu0.61H0.78 Agu 2)B12H12 and (HAgu)2B12H12. Crystallography Reports, 2009, 54, 831-836.	0.6	15
131	Synthesis and properties of calcium hydroxyapatite/silk fibroin organomineral composites. Inorganic Materials, 2017, 53, 333-342.	0.8	15
132	Positional isomers of mononuclear silver(I) anionic complex [Ag(Ph3P)2[B10H10â^'Cl]]â^' (x= 0 or 1) with apically and equatorially coordinated decahydrido-closo-decaborate and 2-chlorononahydrido-closo-decaborate ligands. Polyhedron, 2017, 123, 396-403.	2.2	15
133	Synthesis of nanocrystalline ZnO by the thermal decomposition of [Zn(H2O)(O2C5H7)2] in isoamyl alcohol. Russian Journal of Inorganic Chemistry, 2017, 62, 1415-1425.	1.3	15
134	Sol-gel made titanium dioxide nanostructured thin films as gas-sensing materials for the detection of oxygen. Mendeleev Communications, 2018, 28, 164-166.	1.6	15
135	Nanocrystalline ZnO Obtained by the Thermal Decomposition of [Zn(H2O)(O2C5H7)2] in 1-Butanol: Synthesis and Testing as a Sensing Material. Russian Journal of Inorganic Chemistry, 2018, 63, 1519-1528.	1.3	15
136	Ligand metathesis in copper(I) complex [Cu2(CH3CN)4[B10H10]] to form [Cu2L4[B10H10]] (L =‬Ph3P,) Tj	ETQq000	0 rgBT /Overl 15
137	Theoretical study of closo-borate derivatives of general type [BnHn-1COR]2– (nÂ=Â6, 10, 12; RÂ=ÂH, CH3,) Tj	ет <u>о</u> я110).784314 rgB
138	Formation of Hierarchical NiO Coatings on the Surface of Al2O3 Substrates under Hydrothermal Conditions. Russian Journal of Inorganic Chemistry, 2020, 65, 1292-1297.	1.3	15
139	Synthesis and Thermal Reduction of Complexes [NiLn][B10H10] (L = DMF, H2O, n = 6; L = N2H4, n = 3): Formation of Solid Solutions Ni3C1 –xВx. Russian Journal of Inorganic Chemistry, 2020, 65, 126-132.	1.3	15
140	N-Borylated Hydroxylamines [B12H11NH2OH]– as a Novel Type of Substituted Derivative of the closo-Dodecaborate Anion. Russian Journal of Inorganic Chemistry, 2020, 65, 795-799.	1.3	15
141	Push-pull alkenes bearing closo-decaborate cluster generated via nucleophilic addition of carbanions to borylated nitrilium salts. Inorganica Chimica Acta, 2018, 471, 372-376.	2.4	15
142	Calculation model for the enthalpy of formation of multicomponent hydrides. Journal of the Less Common Metals, 1985, 105, 221-230.	0.8	14
143	Coordination compounds with the general formula trans-[M(18-crown-6)(C5HO2F6)2] as structural-thermochemical analogs. The complexes trans-[Pb(18-crown-6)(C5HO2F6)2] and trans-[Ba(18-crown-6)(C5HO2F6)2]. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya. 2006. 32. 693-700.	1.0	14
144	Reactions of the closo-dodecaborate anion B12H 12 2â^' with hydrogen halides in dichloroethane. Russian Journal of Inorganic Chemistry, 2007, 52, 52-57.	1.3	14

#	Article	IF	CITATIONS
145	Nucleophilic substitution in closo-decaborate [B10H10]2â^ in the presence of carbocations. Russian Chemical Bulletin, 2010, 59, 550-555.	1.5	14
146	A new method of synthesis of the B3H 8 â^' anion. Russian Journal of Inorganic Chemistry, 2012, 57, 471-473.	1.3	14
147	Hydrolysis of nitrilium derivatives of the closo-decaborate anion [2-B10H9(N≡CR)]– (R = CH3, C2H5,) Tj E	TQq1_1 0.7	784314 rgBT
148	Redox processes in the Cu/(phen)/[B12H12]2â^'/solv system: Selective preparation of copper(I), copper(II), and heterovalent copper(I/II) compounds. Inorganica Chimica Acta, 2018, 477, 284-291.	2.4	14
149	New Methods for the Synthesis of Alkoxy Derivatives of the closo-Decaborate Anion [2-B10H9(OR)]2–, Where R = C2H5, iso-C3H7, Đ¡4H9. Russian Journal of Inorganic Chemistry, 2018, 63, 1546-1551.	1.3	14
150	Nucleophilic addition of hydrazine and benzophenone hydrazone to 2-acetonitrilium closo-decaborate cluster: Structural and photophysical study. Inorganica Chimica Acta, 2018, 482, 838-845.	2.4	14
151	Perbrominated Sulfonium-Substituted closo-Decaborates with exo-Polyhedral Amino Groups [2-B10Br9S((CH2)nNH2)2]– (n = 1–3). Russian Journal of Inorganic Chemistry, 2020, 65, 1333-1342.	1.3	14
152	Formation of One-Dimensional Hierarchical MoO3 Nanostructures under Hydrothermal Conditions. Russian Journal of Inorganic Chemistry, 2020, 65, 459-465.	1.3	14
153	Theoretical study of monocarbonyl derivatives of closo-borate anions [B H–1CO]– (n= 6, 10, 12): bonding and reactivity analysis. Mendeleev Communications, 2020, 30, 88-90.	1.6	14
154	Reactive Hot Pressing of HfB2–SiC–Ta4HfC5 Ultra-High Temperature Ceramics. Russian Journal of Inorganic Chemistry, 2020, 65, 446-457.	1.3	14
155	Silicon carbide transport during carbothermic reduction of SiO2: Thermodynamic evaluation and experimental study. Inorganic Materials, 2007, 43, 700-703.	0.8	13
156	Reaction of the closo-decaborate anion B10H 10 2â^' with dichloroethane in the presence of hydrogen halides. Russian Journal of Inorganic Chemistry, 2007, 52, 996-1001.	1.3	13
157	and their derivatives. Russian Journal of Inorganic Chemistry, 2009, 54, 417-424.	1.3	13
158	New positional isomer of the [Ag2(Ph3P)4B10H10] complex: Coordination of the closo-decaborate anion through the 1–2 and 5–8 (3–7) edges. Doklady Chemistry, 2011, 437, 63-65.	0.9	13
159	Determination of the saturation vapor pressure of silicon by Knudsen cell mass spectrometry. Russian Journal of Inorganic Chemistry, 2012, 57, 219-225.	1.3	13
160	Hydride compounds of zinc. Russian Journal of Inorganic Chemistry, 2014, 59, 1665-1678.	1.3	13
161	Theoretical study of H2 elimination from [B n H n + 1]â~' monoanions (n = 6–9, 11). Russian Journal of Inorganic Chemistry, 2014, 59, 1268-1275.	1.3	13
162	Gel formation during sol–gel synthesis of silicon dioxide. Russian Journal of Inorganic Chemistry, 2015, 60, 1444-1451.	1.3	13

#	Article	IF	CITATIONS
163	Study of the synthesis of nanocrystalline mixed tantalum–zirconium carbide. Physics of Atomic Nuclei, 2015, 78, 1357-1365.	0.4	13
164	Preparation of MB2/SiC and MB2/SiC-MC (M = Zr or Hf) powder composites which are promising materials for design of ultra-high-temperature ceramics. Russian Journal of Inorganic Chemistry, 2016, 61, 1649-1676.	1.3	13
165	Preparation of HfB2/SiC composite powders by sol–gel technology. Russian Journal of Inorganic Chemistry, 2016, 61, 1483-1498.	1.3	13
166	Influence of the composition of [Ti(OC4H9)4 – x (O2C5H7) x] complexes and hydrolysis conditions on the synthesis of titania by sol–gel technology. Russian Journal of Inorganic Chemistry, 2016, 61, 929-939.	1.3	13
167	Reaction of the [B10H9O2C4H8]– anion with C-nucleophiles. Russian Journal of Inorganic Chemistry, 2017, 62, 808-813.	1.3	13
168	Synthesis of Boron-Containing Siloxanes by Reaction of Hydroxy-closo-Decaborates with Dihalosilanes. Russian Journal of Inorganic Chemistry, 2018, 63, 213-218.	1.3	13
169	A New Method for Synthesis of Binary Borides with Desired Properties. Doklady Chemistry, 2019, 487, 180-183.	0.9	13
170	Derivatives of closo-Decaborate Anion with Polyamines. Russian Journal of Inorganic Chemistry, 2019, 64, 977-983.	1.3	13
171	Metal-Promoted Exopolyhedral Substitution of Terminal Hydrogen Atoms in the Closo-Decaborate Anion [B10H10]2– in the Presence of Copper(II): Formation of the Substituted Derivative [2-B10H9OH]2–. Journal of Cluster Science, 2021, 32, 755-763.	3.3	13
172	Improved Al/Si ohmic contacts to p-type 4H-SiC. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 80, 374-377.	3.5	12
173	Compounds of Undecahydrodecaborate Anion B10H11–. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2001, 27, 622-624.	1.0	12
174	The Mechanism of Acid-Catalyzed Nucleophilic Substitution in Decahydro-closo-Decaborate(2–) Anions. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2001, 27, 619-621.	1.0	12
175	Complexes of gold clusters with the closo-borate anions B10H 10 2â^ and B12H 12 2â^. Doklady Chemistry, 2007, 414, 137-139.	0.9	12
176	A new preparative method for the synthesis of oxonium derivatives of the decahydro-closo-decaborate anion. Russian Chemical Bulletin, 2010, 59, 371-373.	1.5	12
177	Oxonium derivatives of closo-decaborate in reactions with sulfur-containing nucleophiles. Russian Chemical Bulletin, 2010, 59, 556-559.	1.5	12
178	Theoretical study of dodecahydro-closo-decaborane B10H12, the diprotonated boron cluster B10H 10 2â~'. Russian Journal of Inorganic Chemistry, 2013, 58, 793-799.	1.3	12
179	Reactions of sodium tetrahydroborate with alkyl and aryl halides: A new approach to the synthesis of B3H 8 â^' and B12H 12 2â^' anions. Russian Journal of Inorganic Chemistry, 2013, 58, 1321-1323.	1.3	12
180	New methods of preparation of hydroxy-closo-decaborates [B10H10 â^' n (OH) n]2â^' (n = 1, 2). Russian Journal of Inorganic Chemistry, 2013, 58, 1395-1399.	1.3	12

#	Article	IF	CITATIONS
181	Interaction of [В10H10]2– and [В12H12]2– with nitro compounds. Doklady Chemistry, 2017, 477, 257-	2600.9	12
182	Glycol-citrate synthesis of fine-grained oxides La2â^'xGdxZr2O7 and preparation of corresponding ceramics using FAST/SPS process. Ceramics International, 2018, 44, 7647-7655.	4.8	12
183	Synthesis and Structure of [Đœ(DMF)6][B10H10] (M = Zn(II), Cd(II)) as Precursors for Solid-Phase Synthesis of Trischelate Complexes [Đœ(L)3][B10H10]. Russian Journal of Inorganic Chemistry, 2018, 63, 1552-1557.	1.3	12
184	Electrophilicity of aliphatic nitrilium closo -decaborate clusters: Hyperconjugation provides an unexpected inverse reactivity order. Journal of Organometallic Chemistry, 2018, 870, 97-103.	1.8	12
185	Heat-Treatment-Induced Evolution of the Mesostructure of Finely Divided Y3Al5O12 Produced by the Sol–Gel Method. Russian Journal of Inorganic Chemistry, 2018, 63, 691-699.	1.3	12
186	Rich dynamics and anticontrol of extinction in a prey–predator system. Nonlinear Dynamics, 2019, 98, 1421-1445.	5.2	12
187	Boron Cluster Anions [B10X10]2– (X = H, Cl) in Manganese(II) Complexation with 2,2'-Bipyridyl. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2019, 45, 295-300.	1.0	12
188	Sol-gel synthesis of SiC@Y3Al5O12 composite nanopowder and preparation of porous SiC-ceramics derived from it. Materials Chemistry and Physics, 2019, 235, 121734.	4.0	12
189	Synthesis of Substituted Derivatives of closo-Decaborate Anion with a Peptide Bond: The Way towards Designing Biologically Active Boron-Containing Compounds. Russian Journal of Inorganic Chemistry, 2019, 64, 1499-1506.	1.3	12
190	A sol-gel synthesis and gas-sensing properties of finely dispersed ZrTiO4. Materials Chemistry and Physics, 2019, 225, 347-357.	4.0	12
191	Formation of oxidopolyborates in destruction of the [B11H14]– anion promoted by transition metals. Inorganica Chimica Acta, 2020, 509, 119693.	2.4	12
192	High-Temperature Spin Crossover in Complexes of Iron(II) closo-Borates with 2,6-Bis(benzimidazol-2-yl)pyridine. Russian Journal of Inorganic Chemistry, 2020, 65, 1687-1694.	1.3	12
193	Synthesis, Structures, and Properties of Zinc(II) and Cadmium(II) Complexes with Boron Cluster Anions [M(solv)6][BnHn] (M = Zn(II), Cd(II); solv = DMF, DMSO; n = 10, 12). Russian Journal of Inorganic Chemistry, 2020, 65, 846-853.	1.3	12
194	Oxidation of Porous HfB2–SiC Ultra-High-Temperature Ceramic Materials Rich in Silicon Carbide (65) Tj ETQq	0 0 0 _{1.3} gBT	/Overlock 10 12
195	Synthesis and structures of mono- and binuclear silver(I) complexes with triphenylphosphine and the dodecahydro-closo-dodecaborate anion. Polyhedron, 2020, 184, 114566.	2.2	12
196	The peculiarities of the behaviour of hydride systems related to mechanisms of phase transitions. Journal of the Less Common Metals, 1989, 152, 275-285.	0.8	11
197	Crystal structures of cesium and dimethylammonium cupradecaborates, Cs[CuB10H10] and (CH3)2 NH2[CuB10H10]. Crystallography Reports, 2003, 48, 84-91.	0.6	11
198	The lead(II) complexes with 18-Crown-6, 1,1,1,5,5,5-hexafluoropentane-2,4-dionate and 1,1,1-trifluoropentate-2,4-dionate anions: Synthesis, structure, and thermochemical properties. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2008, 34, 157-166.	1.0	11

#	Article	IF	CITATIONS
199	Synthesis, structure and thermochemical behavior of bis-(1,1,1,5,5,5-hexafluoro-2,4-pentanedionato)-(1,4,7,10,13,16-hexaoxa-cyclooctadecane)-strontium in comparison with its structural and thermochemical analogous. Inorganica Chimica Acta, 2009, 362, 5133-5138.	2.4	11
200	Selectivity problem of metal oxide based sensors in the presence of water vapors. Procedia Engineering, 2010, 5, 111-114.	1.2	11
201	First example of the ribbed-functionalized iron(ii) clathrochelate with six pendante closo-borate substituents. Russian Chemical Bulletin, 2011, 60, 2518-2521.	1.5	11
202	Interactions of sodium liquid glass with triethylammonium decahydro-closo-decaborate (Et3NH)2B10H10. Russian Journal of Inorganic Chemistry, 2014, 59, 107-110.	1.3	11
203	Theoretical study of molecular hydrogen elimination from the undecahydrodecaborate monoanion [B10H11]â''. Exopolyhedral substitution intermediates: [B10H9]â'' monoanion and neutral [B10H10] cluster. Russian Journal of Inorganic Chemistry, 2014, 59, 706-712.	1.3	11
204	Analytic Exact Upper Bound for the Lyapunov Dimension of the Shimizu–Morioka System. Entropy, 2015, 17, 5101-5116.	2.2	11
205	New method for preparation of sulfanyl derivative of closo-decaborate anion [B10H9SH]2â^'. Russian Journal of Inorganic Chemistry, 2015, 60, 198-202.	1.3	11
206	Preparation of nanostructured titania thin films by sol–gel technology. Russian Journal of Inorganic Chemistry, 2016, 61, 1505-1511.	1.3	11
207	Preparation of nanostructured thin films of yttrium iron garnet (Y3Fe5O12) by sol–gel technology. Russian Journal of Inorganic Chemistry, 2016, 61, 805-810.	1.3	11
208	Effective binding of perhalogenated closo -borates to serum albumins revealed by spectroscopic and ITC studies. Journal of Molecular Structure, 2017, 1141, 75-80.	3.6	11
209	Identification of Bâr'H···Hâr'C Specific Interactions Observed in Complexes [M(solv)6][B10H10] (M = Co, Ni) by Spectral Analytical Methods. Russian Journal of Inorganic Chemistry, 2018, 63, 1050-1055.	1.3	11
210	Tin Acetylacetonate as a Precursor for Producing Gas-Sensing SnO2 Thin Films. Russian Journal of Inorganic Chemistry, 2018, 63, 851-860.	1.3	11
211	Mixed-ligand polymeric and binuclear silver(I) complexes with the decahydro-closo-decaborate anion and azaheterocyclic ligands L (L =†bipy, phen, bpa). Inorganica Chimica Acta, 2019, 493, 38-42.	2.4	11
212	Synthesis and Physicochemical Properties of C-Borylated Esters Based on the closo-Decaborate Anion. Russian Journal of Inorganic Chemistry, 2020, 65, 1547-1551.	1.3	11
213	Complex Compounds of Iron(II) with 2,2'-Bipyridylamine and Boron Cluster Anions [BnHn]2– (n = 10,) Tj ETQq1	1.8.7843	14 rgBT /0v
214	Energy of Chemical Bonds in Lanthanide Hydrides. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2000, 26, 887-890.	1.0	10
215	Structure of the undecahydrodecaborate anion B10H 11 â~' . Crystal structures of [Ph 3PCH2 Naph]B10H11 and [Ph 3PEt]2B10H10. Crystallography Reports, 2004, 49, 767-771.	0.6	10
216	Cage complexes as a molecular scaffold for polyfunctional and polytopic systems: Synthesis of the first closo-borate iron(II) clathrochelate. Russian Chemical Bulletin, 2006, 55, 22-25.	1.5	10

#	Article	IF	CITATIONS
217	Synthesis and structure of the cadmium(II) complex [Cd2(Ph(NH2)2)5(DMFA)4](B10H10)2. Russian Journal of Inorganic Chemistry, 2007, 52, 854-858.	1.3	10
218	Crystal structure of tetraphenylphosphonium 2-{[(Z)-Hydroxy(phenyl)methylene]ammonio}nonahydro-closo-Decaborate: The intramolecular O-H··ÂB3 hydrogen bond in the [B10H9NHC(OH)Ph]â° anion. Crystallography Reports, 2007, 52, 271-274.	0.6	10
219	Studies of thermal stability of nanocrystalline SnO2, ZrO2, and SiC for semiconductor and thermocatalytic gas sensors. Russian Journal of Electrochemistry, 2009, 45, 470-475.	0.9	10
220	Mechanochemical synthesis of complex hydrides. Russian Journal of Inorganic Chemistry, 2012, 57, 1631-1652.	1.3	10
221	Nucleophilic addition of aromatic amide oximes to [2-B10H9NCC2H5]– anion. Russian Journal of General Chemistry, 2017, 87, 37-43.	0.8	10
222	Secondary interactions as defined by 35 Cl NQR spectra in cesium decachloro- closo -decaborates prepared in non-aqueous solutions. Polyhedron, 2017, 138, 140-144.	2.2	10
223	Iron(II) Complexes with Boron Cluster Anion [B ₁₀ Cl ₁₀] ^{2–} : Intermolecular Interactions according to ³⁵ Cl NQR Spectroscopy and Xâ€ray Diffraction. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 1939-1947.	1.2	10
224	A new method for the synthesis of metal complexes with trans-[B20H18]2– dianion. Doklady Chemistry, 2017, 474, 141-143.	0.9	10
225	Production of porous ceramic materials using nanodisperse SiC powder. Russian Journal of Inorganic Chemistry, 2017, 62, 863-869.	1.3	10
226	Structures, magnetic properties, and EPR studies of tetranuclear copper(II) complexes [Cu4(OH)4L4]4+ (LÂ=Âbpa, bipy) stabilized by anions containing decahydro-closo-decaborate anion. Polyhedron, 2020, 183, 114540.	2.2	10
227	Sulfonium closo-hydridodecaborate anions as active components of a potentiometric membrane sensor for lidocaine hydrochloride. Inorganica Chimica Acta, 2021, 514, 119992.	2.4	10
228	Reversible and irreversible transformations in intermetallic compound-hydrogen systems. Journal of the Less Common Metals, 1989, 147, 185-193.	0.8	9
229	Vaporization of Molecular Strontium and Barium β-Diketonates [Sr(15C5)(C5O2F6H)2] and [Ba(18C6)(C5O2F6H)2]. Structure-Thermochemical Approach. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2004, 30, 755-758.	1.0	9
230	Interaction of closo-decaborate anion B10H 10 2â^' with iminium salts. Russian Journal of Inorganic Chemistry, 2006, 51, 1552-1560.	1.3	9
231	Boron cluster anions B10H10 2â~' and B10H11 â~' in complexation reactions of copper(i). Positional isomers of the complex [Cu2(9Nphen)4B10H10]. Russian Chemical Bulletin, 2011, 60, 1608-1611.	1.5	9
232	Thermal and thermo-oxidative properties of the decahydro-closo-decaborate anion B10H10 2â^' in a silicate matrix. Inorganic Materials, 2015, 51, 736-740.	0.8	9
233	Synthesis and Study of Derivatives of the [B10H10]2– Anion with Amino Acids. Russian Journal of Inorganic Chemistry, 2019, 64, 1513-1521.	1.3	9
234	Sol–Gel Synthesis of Functionally Graded SiC–TiC Ceramic Material. Russian Journal of Inorganic Chemistry, 2019, 64, 1456-1463.	1.3	9

#	Article	IF	CITATIONS
235	Sol–Gel Synthesis of Highly Dispersed Tantalum Hafnium Carbide Ta4HfC5. Russian Journal of Inorganic Chemistry, 2019, 64, 1317-1324.	1.3	9
236	Behavior of Ultra-High Temperature Ceramic Material HfB2–SiC–Y3Al5O12 under the Influence of Supersonic Dissociated Air Flow. Russian Journal of Inorganic Chemistry, 2020, 65, 1596-1605.	1.3	9
237	Features of Hydrothermal Growth of Hierarchical Co3O4 Coatings on Al2O3 Substrates. Russian Journal of Inorganic Chemistry, 2020, 65, 1304-1311.	1.3	9
238	Synthesis and properties of meso-arylporphyrin – closo-decaborate anion conjugates. Macroheterocycles, 2014, 7, 394-400.	0.5	9
239	Features of Formation of Mononuclear and Binuclear Copper(II) Complexes with 2,2'-Bipyridyl and closo-Decaborate Anion. Russian Journal of Inorganic Chemistry, 2020, 65, 1343-1350.	1.3	9
240	Heats of formation of hydrides of intermetallic compounds: Quantitative predictions. Journal of the Less Common Metals, 1987, 128, 1-6.	0.8	8
241	Synthesis and structure of the polymeric complex [Ag2(Ph3P)2B10H10] n. Russian Journal of Inorganic Chemistry, 2010, 55, 34-39.	1.3	8
242	The undecahydrodecaborate anion B10H 11 â^' as the starting reagent in exopolyhedral substitution and complexation: Theoretical and experimental prerequisites. Russian Journal of Inorganic Chemistry, 2012, 57, 331-336.	1.3	8
243	Intentional selection of coordination compounds with the required thermochemical properties on the basis of the cambridge bank of structural data. Russian Journal of Physical Chemistry A, 2012, 86, 1340-1351.	0.6	8
244	Nonlinear Phase Shift Compensator for Pilot-Induced Oscillations Prevention. , 2015, , .		8
245	Isothermal diagrams of the Li2O–MnO–MnO2 system. Doklady Chemistry, 2015, 465, 268-271.	0.9	8
246	Thermal oxidation of the decahydro-closo-decaborate anion B10H 10 2â^' in a silicate matrix. Inorganic Materials, 2015, 51, 498-502.	0.8	8
247	How xerogel carbonization conditions affect the reactivity of highly disperse SiO2–C composites in the sol–gel synthesis of nanocrystalline silicon carbide. Russian Journal of Inorganic Chemistry, 2016, 61, 1347-1360.	1.3	8
248	Composites based on triethylammonium dodecahydro-closo-Dodecaborate ((Et 3NH)2[B12H12]) and sodium silicate water glass. Inorganic Materials, 2017, 53, 207-211.	0.8	8
249	New coordination polymers of silver(I) based on dodecahydro-closo-dodecaborate anion: Synthesis and structure. Doklady Chemistry, 2017, 475, 164-167.	0.9	8
250	A new method for the synthesis of carboxonium derivatives of the closo-decaborate anion [2,6-B10H8(O2CR)]–, where R = CH3, C2H5. Russian Journal of Inorganic Chemistry, 2017, 62, 1479-1482.	1.3	8
251	Methods of Creating closo-Decaborate Anion Derivatives with Bridging and Terminal Exopolyhedral Cyclic Substituents of Sulfonium Type. Doklady Chemistry, 2018, 483, 263-265.	0.9	8
252	Complex [Ag(PPh3)4][2-B10H9NH3 · 2DMF]: Synthesis and Structure. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2019, 45, 563-568.	1.0	8

#	Article	IF	CITATIONS
253	Oxidation of Ultra-High Temperature HfB2–SiC Ceramic Materials in Humid Air Flow. Russian Journal of Inorganic Chemistry, 2019, 64, 1849-1853.	1.3	8
254	Synthesis and Physicochemical Properties of C-Borylated Amides Based on the closo-Decaborate Anion. Russian Journal of Inorganic Chemistry, 2019, 64, 1405-1409.	1.3	8
255	Microstructure, phase composition, and gas-sensing properties of nanostructured ZrO2-xY2O3 thin films and powders obtained by the sol-gel method. Ionics, 2019, 25, 1259-1270.	2.4	8
256	Perchlorosilanes and perchlorocarbosilanes as precursors for SiC synthesis. Inorganic Materials, 2007, 43, 369-372.	0.8	7
257	Tin(ii) Hexafluoroacetylacetonate as a Precursor in Atmospheric Pressure Chemical Vapour Deposition: Synthesis, Structure and Properties. Mendeleev Communications, 2012, 22, 239-241.	1.6	7
258	Potentiometric sensors with membranes based on ionic liquid tetradecylammonium triethylammonio-closo-dodecaborate. Journal of Analytical Chemistry, 2012, 67, 168-171.	0.9	7
259	Phase states of Li(Na,K,Rb,Cs)/W/Mn/SiO2 composite catalysts for oxidative coupling of methane. Russian Journal of Inorganic Chemistry, 2016, 61, 1689-1707.	1.3	7
260	Sol–gel synthesis of iron yttrium garnet Y3Fe5O12 using metal acetylacetonates. Russian Journal of Inorganic Chemistry, 2017, 62, 1135-1140.	1.3	7
261	New binuclear copper(II) complexes [Cu2(L)4(μ-CO3)][B12H12] (L = bipy, phen): Synthesis, structure, and magnetic properties. Doklady Chemistry, 2017, 474, 137-140.	0.9	7
262	Thermal and thermomechanical properties of trialkylammonium dodecahydro-closo-dodecaborates (R3NH)2[B12H12] (R = Et, Đ'u). Russian Journal of Inorganic Chemistry, 2017, 62, 84-89.	1.3	7
263	Selective synthesis of the [2-B10H9I]2â^ anion and some theoretical aspects of its iodination process. Polyhedron, 2018, 139, 125-130.	2.2	7
264	Synthesis, vaporization and thermodynamic properties of superfine yttrium aluminum garnet. Journal of Alloys and Compounds, 2018, 764, 397-405.	5.5	7
265	Thermal reactions of alkaline metal borohydrides: Synthesis of borides. Journal of the Less Common Metals, 1986, 117, 41-44.	0.8	6
266	Synthesis, Spectroscopic Characterization, and Structure of closo-1,10-B10H8F22- and Related Fluorinated Derivatives of B10H102 Collection of Czechoslovak Chemical Communications, 1997, 62, 1310-1324.	1.0	6
267	Finely dispersed refractory compounds for high-temperature ceramic matrix composite applications. Russian Journal of General Chemistry, 2010, 80, 658-665.	0.8	6
268	Polydentate ligands based on closo-decaborate anion for the synthesis of gadolinium(iii) complexes. Russian Chemical Bulletin, 2013, 62, 1417-1421.	1.5	6
269	Theoretical study of protonation of the B12H122â^' anion and subsequent hydrogen loss from the B12H13â^': Effect of the medium. Computational and Theoretical Chemistry, 2014, 1042, 16-22.	2.5	6
270	lsomerization [trans-B20H18]2– → [iso-B20H18]2– during silver(I) complexation with triphenylphosphine. Doklady Chemistry, 2015, 465, 291-294.	0.9	6

ÐÐ,колай ЊÑſзнÐ

#	Article	IF	CITATIONS
271	Preparation of highly porous Nb x Ta1–x C ceramics from polymer-matrix composite materials based on a phenol-formaldehyde binder and low hydrated hydroxide of niobium and tantalum. Inorganic Materials, 2015, 51, 1066-1072.	0.8	6
272	Theoretical study of protonation of the B 10 H 10 2â^' anion and subsequent hydrogen removal due to substitution reaction in acidic medium. Computational and Theoretical Chemistry, 2016, 1075, 77-81.	2.5	6
273	QTAIM Analysis of Mono-Hydroxy Derivatives of closo-Borate Anions [BnHn– 1OH]2– (n = 6, 10, 12). Russian Journal of Inorganic Chemistry, 2019, 64, 1825-1828.	1.3	6
274	Effect of the Surface Relief of HfB2-SiC Ceramic Materials on Their High-Temperature Oxidation. Russian Journal of Inorganic Chemistry, 2019, 64, 1681-1686.	1.3	6
275	Silver(I) complexes with substituted derivatives of the boron cluster anions as ligands. Inorganica Chimica Acta, 2020, 510, 119749.	2.4	6
276	Energetics of Long-Range Coordination Interactions of Gold Atoms in Inorganic Complexes. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2001, 27, 628-631.	1.0	5
277	Vaporization of Molecular Coordination Organotitanium Compounds: Development of the Structure-Thermochemical Approach with Programmed Use of the Cambridge Structural Database. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2004, 30, 679-684.	1.0	5
278	DMS solutions Mg(Fe1-x Ga x)2O4+δ. Doklady Physical Chemistry, 2010, 430, 39-42.	0.9	5
279	Materials science perspectives for oxide ferromagnetic semiconductors. Inorganic Materials, 2010, 46, 1437-1458.	0.8	5
280	Synthesis and crystal structure of Poly(tetraphenylphosphonium (μ2-closo-decaborato)copper(I)). Zeitschrift Fur Kristallographie - Crystalline Materials, 2013, 228, .	0.8	5
281	Calcium hydroxyapatite in hydroxyapatite/graphene oxide/collagen nanohybrids. Russian Journal of Inorganic Chemistry, 2015, 60, 1467-1480.	1.3	5
282	Synthesis of carbocation salts of boron cluster anions [B10H10]2â^' and [B12H12]2â^'. Russian Journal of Inorganic Chemistry, 2015, 60, 771-775.	1.3	5
283	Structure, physicochemical properties, and reactivity of the [B9H9]2– anion. Russian Journal of Inorganic Chemistry, 2016, 61, 1629-1648.	1.3	5
284	Chemical Processes in Systems CuI(CuII)/L/[B12H12]2–/solv (L = bipy, phen; solv = CH3CN, DMF, and) Tj ETQq0	0 0 0 rgBT 1.3	Qverlock 1
285	Synthesis of New Boron-Containing Ligands and Their Hafnium(IV) Complexes. Russian Journal of Inorganic Chemistry, 2020, 65, 839-845.	1.3	5
286	Nitrosation of Dodecahydro-closo-Dodecaborate Anions in Aqueous and Nonaqueous Solutions. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2001, 27, 625-627.	1.0	4
287	Thermodynamics of Coordination Bonds in Metalcloso-Heteroclusters of the Endofullerene Type M@NkBrCsn–(m=k+r+s= 12, 24, or 28;n= 0–4), Where M = Li, Mg, Al, Ti, Zr, Hf, V, Nb, Mo, Ru, Rh, Ir, Ta, Pt, Pd, and Au. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2003, 29, 766-772.	1.0	4
288	Catalytic Synthesis of Basic Petrochemical Products from C1-C4 Alkanes. Chemistry and Technology of Fuels and Oils, 2005, 41, 131-140	0.5	4

#	Article	IF	CITATIONS
289	Reaction of closo-dodecaborate anion B12H 12 2â^' with iminium salts. Russian Journal of Inorganic Chemistry, 2006, 51, 1716-1722.	1.3	4
290	Method for the preparation of aluminum hydride. Russian Journal of Inorganic Chemistry, 2010, 55, 1830-1832.	1.3	4
291	Modern aspects of the chemistry of complex boron and aluminum hydrides. Russian Journal of Inorganic Chemistry, 2010, 55, 2128-2147.	1.3	4
292	Synthesis and structure of tin tetrachloride adducts with crown ether: Crystal structure of [Sn(H2O)2Cl4] · 18C6 and [Sn(H2O)2Cl4] · 18C6 · 2H2O. Russian Journal of Inorganic Chemistry, 2011, 56, 530-538.	1.3	4
293	Ion-selective electrodes for the determination of closoborate anions. Journal of Analytical Chemistry, 2011, 66, 666-669.	0.9	4
294	Boron cluster anions [B n H n]2â^' (n = 10, 12) in the formation of binuclear iron(II) complexes with bridging CO3 group and azaheterocyclic ligands L (L = Bipy, Phen). Doklady Chemistry, 2015, 461, 96-99.	0.9	4
295	Theoretical study of exopolyhedral substitution in the hexahydro-closo-hexaborate anion. Russian Journal of Inorganic Chemistry, 2015, 60, 1110-1116.	1.3	4
296	Preparation and Characterization of MgH2 Mechanocomposites with Mg2NiH0.3 + Mg2NiH4 – Î′ Two-Phase Mixture. Russian Journal of Inorganic Chemistry, 2018, 63, 1529-1533.	1.3	4
297	Formation of Nanoscale Sodium Dodecahydro-closo-Dodecaborate Na2[B12H12] on the Surface of a Silicate Matrix. Doklady Chemistry, 2019, 484, 1-4.	0.9	4
298	Production and Oxidation Resistance of HfB2–30 vol % SiC Composite Powders Modified with Y3Al5O12. Russian Journal of Inorganic Chemistry, 2020, 65, 1416-1423.	1.3	4
299	Coordination of Heterovalent Iron Atoms in SrCo1 – yFeyO3 – zSolid Solutions. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2001, 27, 632-635.	1.0	3
300	Molecular structure of C(SiCl3)4 tetrakis-(trichlorosilyl)methane. Journal of Structural Chemistry, 2009, 50, 153-157.	1.0	3
301	Europium phosphonates. Russian Journal of Inorganic Chemistry, 2009, 54, 1396-1400.	1.3	3
302	lsomerism of metal complexes with the boron cluster anions B10H 10 2â^' and B12H 12 2â^'. Russian Journal of Inorganic Chemistry, 2009, 54, 1947-1951.	1.3	3
303	Thermodynamic and experimental study of the interaction of silicon and carbon monoxide: Synthesis of silicon carbide nanofibers. Russian Journal of Inorganic Chemistry, 2011, 56, 1517-1524.	1.3	3
304	Boron nanoparticles: Reactivity and properties. Russian Journal of Inorganic Chemistry, 2011, 56, 1589-1597.	1.3	3
305	Theoretical study of the structures of [M(18C6)](HFA)2 complexes (M = Ba, Sr, Pb, Cd, Mn; 18C6 =) Tj ETQq1 1 0 713-720.	0.784314 (1.3	rgBT /Overlo 3
306	Tin trifluoroacetylacetonate [Sn(C5H4O2F3)2] as a precursor of tin dioxide in APCVD process. Russian Journal of Inorganic Chemistry, 2016, 61, 545-553.	1.3	3

#	Article	IF	CITATIONS
307	Synthesis and properties of calcium hydroxyapatite/carbon fiber composites. Russian Journal of Inorganic Chemistry, 2017, 62, 1162-1172.	1.3	3
308	Nanocrystalline Calcium Carbonate Hydroxyapatites Containing Multiwall Carbon Nanotubes: Synthesis and Physicochemical Characterization. Russian Journal of Inorganic Chemistry, 2018, 63, 1001-1006.	1.3	3
309	Protonation of the Dodecahydro-closo-Dodecaborate Anion in CH3CN/CF3COOH. Russian Journal of Inorganic Chemistry, 2018, 63, 700-707.	1.3	3
310	Polymer Technology of Porous SiC Ceramics Using Milled SiO2 Fibers. Russian Journal of Inorganic Chemistry, 2018, 63, 574-582.	1.3	3
311	Solid-State Synthesis of Lithium-Substituted Spinels Mg1–ÂxLixMnO3–Âδ. Russian Journal of Inorganic Chemistry, 2019, 64, 1482-1485.	1.3	3
312	Thermomechanical properties of compositions based on polysilicates modified with boron cluster anions or SiO2 nanoparticles. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2020, 59, 201-208.	1.9	3
313	Synthesis and Physicochemical Properties of C-Borylated Esters and Amides Based on the closo-Dodecaborate Anion. Russian Journal of Inorganic Chemistry, 2020, 65, 1637-1641.	1.3	3
314	Kinetics of aluminum hydride thermal decomposition. Inorganic Materials, 2000, 36, 458-461.	0.8	2
315	Title is missing!. Doklady Chemistry, 2001, 378, 165-167.	0.9	2
316	Crystal structure of aminoguanidinium hexahydro-closo-hexaborate dihydrate, (CN4H7)2B6H6 · 2H2O. Crystallography Reports, 2002, 47, 47-50.	0.6	2
317	A possibility of using mechanical alloying for developing metal matrix composites with light-weight reinforcements. Journal of Alloys and Compounds, 2007, 434-435, 451-454.	5.5	2
318	Nikolai Semenovich Kurnakov (to the 150th Anniversary of His Birthday). Russian Journal of Inorganic Chemistry, 2010, 55, 1668-1679.	1.3	2
319	MgAl0.4Fe1.6O4 powders prepared via gel combustion. Russian Journal of Inorganic Chemistry, 2012, 57, 794-796.	1.3	2
320	Scanning probe microscope-quartz crystal microbalances integrated system for in-situ study of sensor properties of microamounts of nanomaterials. Theoretical Foundations of Chemical Engineering, 2014, 48, 518-523.	0.7	2
321	Hydride lithiation of spinels LiMn2O4. Doklady Chemistry, 2016, 471, 330-333.	0.9	2
322	Coprecipitation of calcium hydroxyapatite, graphene oxide, and chitosan from aqueous solutions. Russian Journal of Inorganic Chemistry, 2017, 62, 404-412.	1.3	2
323	Solid State Synthesis and Reversible Oxygen Capacity of Li/Mg Overstoichiometric Solid Solutions Based on the Spinel MgMnO3 – Î′. Russian Journal of Inorganic Chemistry, 2019, 64, 1335-1341.	1.3	2
324	Polycondensation of Water Glass Sodium Silicates in the Presence of [BnXn]2– (n = 10, 12; X = H, Cl) Boron Cluster Anions. Inorganic Materials, 2020, 56, 657-661.	0.8	2

#	Article	IF	CITATIONS
325	New Hybrid Polymer Membrane for Potentiometric Uranium-Selective Sensor. Doklady Chemistry, 2020, 491, 57-60.	0.9	2
326	Some Aspects Of Producing And Using Boron Compounds. NATO Science for Peace and Security Series C: Environmental Security, 2008, , 449-456.	0.2	2
327	Iodination of B12H11OC(O)CH2–3, B12H11OH2–, and B12H11SCN2–. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2001, 27, 147-149.	1.0	1
328	Title is missing!. Doklady Chemistry, 2002, 383, 66-68.	0.9	1
329	Selectivity of Complexation in Extractive Separation of Isotopes. Structural Thermodynamic Model. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2004, 30, 605-610.	1.0	1
330	Effect of ultrafine carbon precursors on the morphology of silicon carbide nanoparticles. Theoretical Foundations of Chemical Engineering, 2007, 41, 644-648.	0.7	1
331	Development of Boron Hydrides as Reinforcing Components for Composite Materials. Materials Science Forum, 0, 587-588, 197-201.	0.3	1
332	Metal alloys and carbon nanomaterials as potential hydrogen storage materials. Russian Journal of Inorganic Chemistry, 2010, 55, 1192-1196.	1.3	1
333	Properties of B n nanoparticles: Electron affinity. Russian Journal of Inorganic Chemistry, 2011, 56, 1105-1107.	1.3	1
334	The 80th anniversary of the Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences. Russian Journal of Inorganic Chemistry, 2014, 59, 643-646.	1.3	1
335	General electronegativity profile of a hydrogen molecule. Russian Journal of Inorganic Chemistry, 2015, 60, 875-878.	1.3	1
336	Electronic structure of oxygen-containing bismuth compounds. Russian Journal of Inorganic Chemistry, 2015, 60, 970-974.	1.3	1
337	Theoretical study of the structure and water affinity of [M(18C6)(HFA)2] complexes for M = Zn, Cu, Hg, Co, Ni, and Pt. Russian Journal of Inorganic Chemistry, 2016, 61, 846-857.	1.3	1
338	Synthesis and Structure of New Water-Soluble Ag(I) and Pb(II) Complexes with Sulfonyl-Substituted Derivatives of the closo-Decaborate Anion. Doklady Chemistry, 2018, 483, 297-300.	0.9	1
339	Microemulsion Synthesis of SnO2 Spheres Using Tin Acetylacetonate as a Precursor. Russian Journal of Inorganic Chemistry, 2019, 64, 1758-1761.	1.3	1
340	Vibrational spectra of polyhedral closo-decarborate B10X 10 2? anions (X=H, D, Cl, Br, I). Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1983, 32, 2062-2069.	0.0	0
341	Solvent Effect in the Technology of Receptor Materials of Chemical Sensors. Doklady Chemistry, 2001, 376, 49-51.	0.9	0
342	Title is missing!. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2002, 28, 451-453.	1.0	0

#	Article	IF	CITATIONS
343	Thirty years of the journal Koordinatsionnaya Khimiya (Russian journal of coordination chemistry). Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2005, 31, 1-1.	1.0	0
344	Perchlorosilanes and Perchlorocarbosilanes as Precursors to Silicon Carbide. Materials Research Society Symposia Proceedings, 2006, 911, 12.	0.1	0
345	On the analog of benzene B6H 6 nâ^' , 2 ≤n ≤6: Geometry of B6H 6 nâ^' anions. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2007, 33, 725-728.	1.0	0
346	The development of coordination chemistry. Russian Journal of General Chemistry, 2009, 79, 2709-2710.	0.8	0
347	N. S. Kurnakov's contribution to coordination chemistry. Russian Journal of Inorganic Chemistry, 2010, 55, 1680-1685.	1.3	0
348	Reactivity of boron fullerenes. Russian Journal of Inorganic Chemistry, 2011, 56, 1108-1110.	1.3	0
349	Properties of boron, boride, and indium nanomaterials: The melting temperatures of spherical nanoparticles, nanowires, and nanofilms. Russian Journal of Inorganic Chemistry, 2011, 56, 1416-1420.	1.3	0
350	Influence of chemical structure on acute toxicity of S-containing derivatives of boron clusters intended for neutron-capture therapy of malignant neoplasms. Pharmaceutical Chemistry Journal, 2012, 46, 536-539.	0.8	0
351	Nickel(II) and Iron(II) coordination compounds with octahydrotriborate(1–) anion [ML3]{B3H8}2 (M =) Tj ETQ0	110.784 0.9	13]4 rgBT /○
352	Theoretical study of the redox reactivity of complex boron hydrides K2[B12H12], Cs2[B12H12], and Tl2[B10H10] and their mixed salts K2[B12H12] • KCl, Cs2[B12H12] • CsCl, and Tl2[B10H10] • KNO3. R Journal of Inorganic Chemistry, 2016, 61, 979-984.	us sia n	0
353	Effect of microwave exposure on the morphology of calcium hydroxyapatite nanocrystals synthesized from aqueous solutions. Russian Journal of Inorganic Chemistry, 2017, 62, 22-26.	1.3	0
354	Hydride Intercalation of Lithium into the Spinel MgMnO3–ÂÎ′. Russian Journal of Inorganic Chemistry, 2019, 64, 1205-1209.	1.3	0
355	Theoretical Сonsideration of Gas Phase Hydrolytic Stability of Crown Ether Based CVD-Precursors of Metal Oxides Thin Films. Macroheterocycles, 2015, 8, 185-192.	0.5	0