Shuji Noguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10101074/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crystal Structure of Ustilago sphaerogena Ribonuclease U2 at 1.8 .ANG. Resolution. Biochemistry, 1995, 34, 15583-15591.	2.5	50
2	Succinimide and isoaspartate residues in the crystal structures of hen egg-white lysozyme complexed with tri-N-acetylchitotriose. Journal of Molecular Biology, 1998, 278, 231-238.	4.2	46
3	Enhancing the Solubility and Oral Bioavailability of Poorly Water-Soluble Drugs Using Monoolein Cubosomes. Chemical and Pharmaceutical Bulletin, 2017, 65, 42-48.	1.3	38
4	Structural changes induced by the deamidation and isomerization of asparagine revealed by the crystal structure of <i>Ustilago sphaerogena</i> ribonuclease U2B. Biopolymers, 2010, 93, 1003-1010.	2.4	32
5	Investigation of internal structure of fine granules by microtomography using synchrotron X-ray radiation. International Journal of Pharmaceutics, 2013, 445, 93-98.	5.2	27
6	Preparation and Characterization of SN-38-Encapsulated Phytantriol Cubosomes Containing α-Monoglyceride Additives. Chemical and Pharmaceutical Bulletin, 2016, 64, 577-584.	1.3	26
7	Development of Highly Stable Nifedipine Solid–Lipid Nanoparticles. Chemical and Pharmaceutical Bulletin, 2014, 62, 399-406.	1.3	24
8	The use of surfactants to enhance the solubility and stability of the water-insoluble anticancer drug SN38 into liquid crystalline phase nanoparticles. International Journal of Pharmaceutics, 2016, 515, 501-505.	5.2	24
9	Clarithromycin highly-loaded gastro-floating fine granules prepared by high-shear melt granulation can enhance the efficacy of Helicobacter pylori eradication. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 92, 22-27.	4.3	22
10	Evaluation of Crystallization Behavior on the Surface of Nifedipine Solid Dispersion Powder Using Inverse Gas Chromatography. Pharmaceutical Research, 2013, 30, 502-511.	3.5	20
11	Design and evaluation of microwave-treated orally disintegrating tablets containing polymeric disintegrant and mannitol. International Journal of Pharmaceutics, 2013, 448, 132-141.	5.2	20
12	Effect of gel formation on the dissolution behavior of clarithromycin tablets. International Journal of Pharmaceutics, 2017, 521, 33-39.	5.2	19
13	Polymorphic Transformation of Antibiotic Clarithromycin Under Acidic Condition. Journal of Pharmaceutical Sciences, 2014, 103, 580-586.	3.3	18
14	Mathematical model to analyze the dissolution behavior of metastable crystals or amorphous drug accompanied with a solid-liquid interface reaction. International Journal of Pharmaceutics, 2017, 522, 58-65.	5.2	18
15	Lipid nanoparticles with no surfactant improve oral absorption rate of poorly water-soluble drug. International Journal of Pharmaceutics, 2013, 451, 92-94.	5.2	17
16	Fine granules showing sustained drug release prepared by high-shear melt granulation using triglycerin full behenate and milled microcrystalline cellulose. International Journal of Pharmaceutics, 2015, 478, 530-539.	5.2	16
17	Sustained-release microsphere formulation containing an agrochemical by polyurethane polymerization during an agitation granulation process. International Journal of Pharmaceutics, 2016, 509, 328-337.	5.2	16
18	Development and evaluation of a tacrolimus cream formulation using a binary solvent system. International Journal of Pharmaceutics, 2014, 464, 19-26.	5.2	15

Shuji Noguchi

#	Article	IF	CITATIONS
19	Nobiletin: a citrus flavonoid displaying potent physiological activity. Acta Crystallographica Section C, Structural Chemistry, 2016, 72, 124-127.	0.5	15
20	Clarithromycin form I determined by synchrotron X-ray powder diffraction. Acta Crystallographica Section C: Crystal Structure Communications, 2012, 68, o41-o44.	0.4	13
21	Mechanisms for Improved Hygroscopicity of L-Arginine Valproate Revealed by X-Ray Single Crystal Structure Analysis. Journal of Pharmaceutical Sciences, 2017, 106, 859-865.	3.3	13
22	Phase transitions of antibiotic clarithromycin forms I, IV and new form VII crystals. International Journal of Pharmaceutics, 2018, 547, 258-264.	5.2	13
23	Structural investigation of spherical hollow excipient Mannit Q by X-ray microtomography. International Journal of Pharmaceutics, 2015, 495, 140-143.	5.2	11
24	Impact of active ingredients on the swelling properties of orally disintegrating tablets prepared by microwave treatment. International Journal of Pharmaceutics, 2014, 468, 234-242.	5.2	10
25	Chlorine K-Edge X-ray Absorption Near-Edge Structure Discrimination of Crystalline Solvates and Salts in Organic Molecules. Crystal Growth and Design, 2020, 20, 4892-4897.	3.0	10
26	Chlorine K-Edge X-Ray Absorption Near-Edge Structure Analysis of Clarithromycin Hydrochloride Metastable Crystal. Journal of Pharmaceutical Sciences, 2020, 109, 2095-2099.	3.3	9
27	X-ray Absorption Near-Edge Spectroscopy Analysis of Indomethacin in Crystalline Forms and in Amorphous Solid Dispersions. Molecular Pharmaceutics, 2021, 18, 3475-3483.	4.6	9
28	lsomerization mechanism of aspartate to isoaspartate implied by structures of <i>Ustilago sphaerogena</i> ribonuclease U2 complexed with adenosine 3′-monophosphate. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 843-849.	2.5	8
29	Suppressed Release of Clarithromycin from Tablets by Crystalline Phase Transition of Metastable Polymorph Form I. Journal of Pharmaceutical Sciences, 2015, 104, 2641-2644.	3.3	8
30	Structural changes of polymer-coated microgranules and excipients on tableting investigated by microtomography using synchrotron X-ray radiation. International Journal of Pharmaceutics, 2015, 481, 132-139.	5.2	8
31	Reduced deliquescency of isosorbide by cocrystallization and mechanisms for hygroscopicity. International Journal of Pharmaceutics, 2021, 607, 120959.	5.2	8
32	Effect of surfactants or a water soluble polymer on the crystal transition of clarithromycin during a wet granulation process. International Journal of Pharmaceutics, 2015, 495, 204-217.	5.2	7
33	Mechanism of the formation of hollow spherical granules using a high shear granulator. European Journal of Pharmaceutical Sciences, 2018, 117, 371-378.	4.0	7
34	Investigation of Physical Properties of Disodium Etidronate Tetrahydrate and Application of Phosphorus K-Edge X-Ray Absorption Near-Edge Structure Spectroscopy. Pharmaceutical Research, 2021, 38, 2147-2155.	3.5	7
35	Preparation of Orally Disintegrating Tablets Containing Powdered Tea Leaves with Enriched Levels of Bioactive Compounds by Means of Microwave Irradiation Technique. Chemical and Pharmaceutical Bulletin, 2016, 64, 1288-1297.	1.3	6
36	Structural and biochemical basis of the formation of isoaspartate in the complementarity-determining region of antibody 64M-5 Fab. Scientific Reports, 2019, 9, 18494.	3.3	6

Shuji Noguchi

#	Article	IF	CITATIONS
37	Bromine K-Edge X-Ray Absorption Near-Edge Structure Analysis on Hydrobromide-Salt Crystals and the Solid Dispersion of Active Pharmaceutical Ingredients. Chemical and Pharmaceutical Bulletin, 2022, 70, 182-186.	1.3	6
38	Investigation of Physicochemical Drug Properties to Prepare Fine Globular Granules Composed of Only Drug Substance in Fluidized Bed Rotor Granulation. Chemical and Pharmaceutical Bulletin, 2015, 63, 1070-1075.	1.3	5
39	Application of water-insoluble polymers to orally disintegrating tablets treated by high-pressure carbon dioxide gas. International Journal of Pharmaceutics, 2016, 511, 10-22.	5.2	5
40	Mechanism of Drug Release From Temperature-Sensitive Formulations Composed of Low-Melting-Point MicrocrystallineÂWax. Journal of Pharmaceutical Sciences, 2019, 108, 2086-2093.	3.3	5
41	Crystal structure of 6â€guanidinohexanoyl trypsin near the optimum pH reveals the acylâ€enzyme intermediate to be deacylated. Proteins: Structure, Function and Bioinformatics, 2013, 81, 526-530.	2.6	4
42	A newly developed lubricant, chitosan laurate, in the manufacture of acetaminophen tablets. International Journal of Pharmaceutics, 2015, 483, 49-56.	5.2	4
43	Saturated fatty acids and fatty acid esters promote the polymorphic transition of clarithromycin metastable form I crystal. International Journal of Pharmaceutics, 2016, 512, 108-117.	5.2	4
44	Stabilization Mechanism of Roxithromycin Tablets Under Gastric pH Conditions. Journal of Pharmaceutical Sciences, 2018, 107, 2514-2518.	3.3	4
45	Salt Cocrystallization of Loxoprofen Sodium with Sugar: Reduction of the Propensity for Hydrate Formation by Forming a Continuous One-Dimensional Chain Structure of Sodium and Sugar. Crystal Growth and Design, 2022, 22, 1094-1103.	3.0	4
46	Clarithromycin monohydrate: a synchrotron X-ray powder study. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, 0667-0668.	0.2	3
47	Effects of the centrifugal coating and centrifugal fluidized bed coating methods on the physicochemical properties of sustained-release microparticles using a multi-functional rotor processor. Advanced Powder Technology, 2014, 25, 430-435.	4.1	3
48	Desolvation behavior of indinavir sulfate ethanol and follow-up by terahertz spectroscopy. International Journal of Pharmaceutics, 2019, 567, 118446.	5.2	3
49	Crystal Structures of Flavone <i>C</i> -Glycosides from Oolong Tea Leaves: Chafuroside A Dihydrate and Chafuroside B Monohydrate. Chemical and Pharmaceutical Bulletin, 2019, 67, 935-939.	1.3	2
50	Crystallization and preliminary X-ray investigation of six new crystal forms of ribonuclease U2 from Ustilago sphaerogena. Journal of Crystal Growth, 1996, 168, 270-274.	1.5	1
51	Structures of the antibody 64M-5 Fab and its complex with dT(6–4)T indicate induced-fit and high-affinity mechanisms. Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 80-88.	0.8	1
52	The antitumour drug 7-ethyl-10-hydroxycamptothecin monohydrate and its solid-state hydrolysis mechanism on heating. Acta Crystallographica Section C, Structural Chemistry, 2016, 72, 743-747.	0.5	0