Zhongwen Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10100626/publications.pdf

Version: 2024-02-01

840585 794469 21 440 11 19 citations h-index g-index papers 21 21 21 285 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Spatial Technology Assessment of Green Space Exposure andÂMyopia. Ophthalmology, 2022, 129, 113-117.	2.5	11
2	Automated detection of retinal exudates and drusen in ultra-widefield fundus images based on deep learning. Eye, 2022, 36, 1681-1686.	1.1	19
3	Artificial intelligence to detect malignant eyelid tumors from photographic images. Npj Digital Medicine, 2022, 5, 23.	5.7	19
4	Deep learning for automated glaucomatous optic neuropathy detection from ultra-widefield fundus images. British Journal of Ophthalmology, 2021, 105, 1548-1554.	2.1	29
5	Development of a deep learning-based image eligibility verification system for detecting and filtering out ineligible fundus images: A multicentre study. International Journal of Medical Informatics, 2021, 147, 104363.	1.6	8
6	Predicting subretinal fluid absorption with machine learning in patients with central serous chorioretinopathy. Annals of Translational Medicine, 2021, 9, 242-242.	0.7	4
7	Automatic classification of heterogeneous slit-illumination images using an ensemble of cost-sensitive convolutional neural networks. Annals of Translational Medicine, 2021, 9, 550-550.	0.7	8
8	Improving the Generalizability of Infantile Cataracts Detection via Deep Learning-Based Lens Partition Strategy and Multicenter Datasets. Frontiers in Medicine, 2021, 8, 664023.	1.2	6
9	Development of a deep learning-based image quality control system to detect and filter out ineligible slit-lamp images: A multicenter study. Computer Methods and Programs in Biomedicine, 2021, 203, 106048.	2.6	8
10	Preventing corneal blindness caused by keratitis using artificial intelligence. Nature Communications, 2021, 12, 3738.	5.8	47
11	Application of Comprehensive Artificial intelligence Retinal Expert (CARE) system: a national real-world evidence study. The Lancet Digital Health, 2021, 3, e486-e495.	5.9	65
12	Comparison of deep learning systems and cornea specialists in detecting corneal diseases from low-quality images. IScience, 2021, 24, 103317.	1.9	6
13	Deep Learning for Detecting Subretinal Fluid and Discerning Macular Status by Fundus Images in Central Serous Chorioretinopathy. Frontiers in Bioengineering and Biotechnology, 2021, 9, 651340.	2.0	5
14	Predicting Central Serous Chorioretinopathy Recurrence Using Machine Learning. Frontiers in Physiology, 2021, 12, 649316.	1.3	3
15	Predicting Post-Therapeutic Visual Acuity and OCT Images in Patients With Central Serous Chorioretinopathy by Artificial Intelligence. Frontiers in Bioengineering and Biotechnology, 2021, 9, 649221.	2.0	18
16	Deep learning for detecting retinal detachment and discerning macular status using ultra-widefield fundus images. Communications Biology, 2020, 3, 15.	2.0	48
17	Deep learning from "passive feeding―to "selective eating―of real-world data. Npj Digital Medicine, 2020, 3, 143.	5 . 7	17
18	Development and Evaluation of a Deep Learning System for Screening Retinal Hemorrhage Based on Ultra-Widefield Fundus Images. Translational Vision Science and Technology, 2020, 9, 3.	1.1	22

ZHONGWEN LI

#	Article	IF	CITATION
19	Detection of Clinically Relevant Genetic Variants in Chinese Patients With Nanophthalmos by Trio-Based Whole-Genome Sequencing Study. , 2019, 60, 2904.		25
20	A deep learning system for identifying lattice degeneration and retinal breaks using ultra-widefield fundus images. Annals of Translational Medicine, 2019, 7, 618-618.	0.7	36
21	Illness uncertainty, anxiety and depression in Chinese patients with glaucoma or cataract. Scientific Reports, 2018, 8, 11671.	1.6	36