L David Sibley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1009866/publications.pdf

Version: 2024-02-01

200 papers

23,500 citations

87 h-index 9589 142 g-index

245 all docs

245 docs citations

245 times ranked 13998 citing authors

#	Article	IF	CITATIONS
1	Virulent strains of Toxoplasma gondii comprise a single clonal lineage. Nature, 1992, 359, 82-85.	27.8	733
2	Modulation of innate immunity by Toxoplasma gondii virulence effectors. Nature Reviews Microbiology, 2012, 10, 766-778.	28.6	470
3	Intracellular Parasite Invasion Strategies. Science, 2004, 304, 248-253.	12.6	415
4	Efficient Gene Disruption in Diverse Strains of Toxoplasma gondii Using CRISPR/CAS9. MBio, 2014, 5, e01114-14.	4.1	407
5	Cytoskeleton of Apicomplexan Parasites. Microbiology and Molecular Biology Reviews, 2002, 66, 21-38.	6.6	389
6	Gr1+ Inflammatory Monocytes Are Required for Mucosal Resistance to the Pathogen Toxoplasma gondii. Immunity, 2008, 29, 306-317.	14.3	377
7	Autophagosome-Independent Essential Function for the Autophagy Protein Atg5 in Cellular Immunity to Intracellular Pathogens. Cell Host and Microbe, 2008, 4, 458-469.	11.0	374
8	Compensatory dendritic cell development mediated by BATF–IRF interactions. Nature, 2012, 490, 502-507.	27.8	367
9	Globally diverse <i>Toxoplasma gondii</i> isolates comprise six major clades originating from a small number of distinct ancestral lineages. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5844-5849.	7.1	349
10	<i>Toxoplasma</i> Effectors Targeting Host Signaling and Transcription. Clinical Microbiology Reviews, 2017, 30, 615-645.	13.6	342
11	CD8α+ Dendritic Cells Are the Critical Source of Interleukin-12 that Controls Acute Infection by Toxoplasma gondii Tachyzoites. Immunity, 2011, 35, 249-259.	14.3	334
12	Mobilization of intracellular calcium stimulates microneme discharge in Toxoplasma gondii. Molecular Microbiology, 1999, 31, 421-428.	2.5	327
13	Calcium-dependent protein kinase 1 is an essential regulator of exocytosis in Toxoplasma. Nature, 2010, 465, 359-362.	27.8	321
14	Acute Toxoplasmosis Leads to Lethal Overproduction of Th1 Cytokines. Journal of Immunology, 2001, 167, 4574-4584.	0.8	320
15	Secretion of micronemal proteins is associated with toxoplasma invasion of host cells. Cellular Microbiology, 1999, 1, 225-235.	2.1	311
16	Calcium-Dependent Signaling and Kinases in Apicomplexan Parasites. Cell Host and Microbe, 2009, 5, 612-622.	11.0	295
17	Phagosome acidification blocked by intracellular Toxoplasma gondii. Nature, 1985, 315, 416-419.	27.8	293
18	Aldolase Forms a Bridge between Cell Surface Adhesins and the Actin Cytoskeleton in Apicomplexan Parasites. Molecular Cell, 2003, 11, 885-894.	9.7	292

#	Article	IF	CITATIONS
19	Phosphorylation of Immunity-Related GTPases by a Toxoplasma gondii-Secreted Kinase Promotes Macrophage Survival and Virulence. Cell Host and Microbe, 2010, 8, 484-495.	11.0	286
20	Genetic analyses of atypical Toxoplasma gondii strains reveal a fourth clonal lineage in North America. International Journal for Parasitology, 2011, 41, 645-655.	3.1	263
21	Phosphorylation of Mouse Immunity-Related GTPase (IRG) Resistance Proteins Is an Evasion Strategy for Virulent Toxoplasma gondii. PLoS Biology, 2010, 8, e1000576.	5 . 6	259
22	Genetic Divergence of Toxoplasma gondii Strains Associated with Ocular Toxoplasmosis, Brazil. Emerging Infectious Diseases, 2006, 12, 942-949.	4.3	248
23	Coordinated Progression through Two Subtranscriptomes Underlies the Tachyzoite Cycle of Toxoplasma gondii. PLoS ONE, 2010, 5, e12354.	2.5	248
24	Transepithelial Migration of Toxoplasma gondii Is Linked to Parasite Motility and Virulence. Journal of Experimental Medicine, 2002, 195, 1625-1633.	8.5	247
25	Local admixture of amplified and diversified secreted pathogenesis determinants shapes mosaic Toxoplasma gondii genomes. Nature Communications, 2016, 7, 10147.	12.8	243
26	Population Structure of <i>Toxoplasma gondii</i> Clonal Expansion Driven by Infrequent Recombination and Selective Sweeps. Annual Review of Microbiology, 2008, 62, 329-351.	7.3	241
27	Invasion by Toxoplasma gondii Establishes a Moving Junction That Selectively Excludes Host Cell Plasma Membrane Proteins on the Basis of Their Membrane Anchoring. Journal of Experimental Medicine, 1999, 190, 1783-1792.	8.5	237
28	Recruitment of Gr-1+ monocytes is essential for control of acute toxoplasmosis. Journal of Experimental Medicine, 2005, 201, 1761-1769.	8.5	236
29	Virulence differences in <i>Toxoplasma</i> mediated by amplification of a family of polymorphic pseudokinases. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9631-9636.	7.1	230
30	The Toxoplasma Pseudokinase ROP5 Forms Complexes with ROP18 and ROP17 Kinases that Synergize to Control Acute Virulence in Mice. Cell Host and Microbe, 2014, 15, 537-550.	11.0	230
31	Participation of myosin in gliding motility and host cell invasion by Toxoplasma gondii. Molecular Microbiology, 1997, 26, 163-173.	2.5	227
32	Rapid invasion of host cells by Toxoplasma requires secretion of the MIC2-M2AP adhesive protein complex. EMBO Journal, 2003, 22, 2082-2090.	7.8	216
33	WDFY4 is required for cross-presentation in response to viral and tumor antigens. Science, 2018, 362, 694-699.	12.6	216
34	Distinct signalling pathways control <i>Toxoplasma</i> egress and host-cell invasion. EMBO Journal, 2012, 31, 4524-4534.	7.8	205
35	Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium. Nature Structural and Molecular Biology, 2010, 17, 596-601.	8.2	196
36	A spatially localized rhomboid protease cleaves cell surface adhesins essential for invasion by Toxoplasma. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4146-4151.	7.1	191

#	Article	lF	Citations
37	Invasion and intracellular survival by protozoan parasites. Immunological Reviews, 2011, 240, 72-91.	6.0	191
38	Genotyping of Toxoplasma gondii Strains from Immunocompromised Patients Reveals High Prevalence of Type I Strains. Journal of Clinical Microbiology, 2005, 43, 5881-5887.	3.9	185
39	Abscisic acid controls calcium-dependent egress and development in Toxoplasma gondii. Nature, 2008, 451, 207-210.	27.8	185
40	Genetic diversity of (i>Toxoplasma gondii (i>in animals and humans. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 2749-2761.	4.0	185
41	Toxoplasma gondii Resides in a Vacuole That Avoids Fusion with Host Cell Endocytic and Exocytic Vesicular Trafficking Pathways. Experimental Parasitology, 1999, 92, 87-99.	1.2	184
42	Intracellular calcium stores in Toxoplasma gondii govern invasion of host cells. Journal of Cell Science, 2003, 116, 3009-3016.	2.0	183
43	Gene Discovery by EST Sequencing in <i>Toxoplasma gondii</i> Reveals Sequences Restricted to the Apicomplexa. Genome Research, 1998, 8, 18-28.	5.5	179
44	Time-Lapse Video Microscopy of Gliding Motility in <i>Toxoplasma gondii </i> Reveals a Novel, Biphasic Mechanism of Cell Locomotion. Molecular Biology of the Cell, 1999, 10, 3539-3547.	2.1	179
45	Transepithelial migration of Toxoplasma gondii involves an interaction of intercellular adhesion molecule 1 (ICAM-1) with the parasite adhesin MIC2. Cellular Microbiology, 2005, 7, 561-568.	2.1	179
46	The Parasitophorous Vacuole Membrane of Toxoplasma gondii Is Targeted for Disruption by Ubiquitin-like Conjugation Systems of Autophagy. Immunity, 2014, 40, 924-935.	14.3	179
47	Inflammatory Monocytes but Not Neutrophils Are Necessary To Control Infection with <i>Toxoplasma gondii </i> in Mice. Infection and Immunity, 2010, 78, 1564-1570.	2.2	178
48	Production of IL-12 by Macrophages Infected with <i>Toxoplasma gondii </i> Depends on the Parasite Genotype. Journal of Immunology, 2004, 172, 3686-3694.	0.8	173
49	Rhoptries: an arsenal of secreted virulence factors. Current Opinion in Microbiology, 2007, 10, 582-587.	5.1	170
50	Guanylate-binding Protein 1 (Gbp1) Contributes to Cell-autonomous Immunity against Toxoplasma gondii. PLoS Pathogens, 2013, 9, e1003320.	4.7	170
51	Migration of Toxoplasma gondii across biological barriers. Trends in Microbiology, 2003, 11, 426-430.	7.7	161
52	Actin in the parasiteToxoplasma gondii is encoded by a single copy gene,ACT1 and exists primarily in a globular form., 1997, 37, 253-262.		160
53	The Polymorphic Pseudokinase ROP5 Controls Virulence in Toxoplasma gondii by Regulating the Active Kinase ROP18. PLoS Pathogens, 2012, 8, e1002992.	4.7	153
54	Toxoplasma Effector Recruits the Mi-2/NuRD Complex to Repress STAT1 Transcription and Block IFN- \hat{l}^3 -Dependent Gene Expression. Cell Host and Microbe, 2016, 20, 72-82.	11.0	153

#	Article	IF	CITATIONS
55	Plasma Membrane Association by N-Acylation Governs PKG Function in <i>Toxoplasma gondii</i> . MBio, 2017, 8, .	4.1	152
56	Toxoplasma gondii Uses Sulfated Proteoglycans for Substrate and Host Cell Attachment. Infection and Immunity, 2000, 68, 4005-4011.	2.2	151
57	Toxoplasma gondii Microneme Secretion Involves Intracellular Ca2+ Release from Inositol 1,4,5-Triphosphate (IP3)/Ryanodine-sensitive Stores. Journal of Biological Chemistry, 2002, 277, 25870-25876.	3.4	151
58	Identification of quantitative trait loci controlling acute virulence in Toxoplasma gondii. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10753-10758.	7.1	151
59	A novel population of Gr-1+-activated macrophages induced during acute toxoplasmosis. Journal of Leukocyte Biology, 2003, 74, 1015-1025.	3.3	149
60	Host cells: mobilizable lipid resources for the intracellular parasite <i>Toxoplasma gondii</i> Journal of Cell Science, 2002, 115, 3049-3059.	2.0	149
61	Composite genome map and recombination parameters derived from three archetypal lineages of Toxoplasma gondii. Nucleic Acids Research, 2005, 33, 2980-2992.	14.5	147
62	Host cells: mobilizable lipid resources for the intracellular parasite Toxoplasma gondii. Journal of Cell Science, 2002, 115, 3049-59.	2.0	143
63	Disruption of microtubules uncouples budding and nuclear division in <i>Toxoplasma gondii</i> Journal of Cell Science, 2002, 115, 1017-1025.	2.0	142
64	Long-Term Culture Captures Injury-Repair Cycles of Colonic Stem Cells. Cell, 2019, 179, 1144-1159.e15.	28.9	140
65	Comparative Genomic and Phylogenetic Analyses of Calcium ATPases and Calcium-Regulated Proteins in the Apicomplexa. Molecular Biology and Evolution, 2006, 23, 1613-1627.	8.9	138
66	A Noncanonical Autophagy Pathway Restricts Toxoplasma gondii Growth in a Strain-Specific Manner in IFN- \hat{l}^3 -Activated Human Cells. MBio, 2015, 6, e01157-15.	4.1	137
67	Dinitroanilines Bind α-Tubulin to Disrupt Microtubules. Molecular Biology of the Cell, 2004, 15, 1960-1968.	2.1	134
68	Selection at a Single Locus Leads to Widespread Expansion of Toxoplasma gondii Lineages That Are Virulent in Mice. PLoS Genetics, 2009, 5, e1000404.	3.5	133
69	A role for coccidian cGMP-dependent protein kinase in motility and invasion. International Journal for Parasitology, 2004, 34, 369-380.	3.1	131
70	Virulent <i>Toxoplasma gondii</i> Evade Immunity-Related GTPase-Mediated Parasite Vacuole Disruption within Primed Macrophages. Journal of Immunology, 2009, 182, 3775-3781.	0.8	131
71	Expressed Sequence Tag Analysis of the Bradyzoite Stage of <i>Toxoplasma gondii</i> is Identification of Developmentally Regulated Genes. Infection and Immunity, 1998, 66, 1632-1637.	2.2	128
72	Gene Discovery in the Apicomplexa as Revealed by EST Sequencing and Assembly of a Comparative Gene Database. Genome Research, 2003, 13, 443-454.	5 . 5	127

#	Article	lF	Citations
73	<i>Toxoplasma</i> GRA7 effector increases turnover of immunity-related GTPases and contributes to acute virulence in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1126-1131.	7.1	127
74	Disruption of microtubules uncouples budding and nuclear division in Toxoplasma gondii. Journal of Cell Science, 2002, 115, 1017-25.	2.0	121
75	Molecular characterization of a 65-kilodalton Toxoplasma gondii antigen expressed abundantly in the matrix of tissue cysts. Molecular and Biochemical Parasitology, 1994, 66, 283-296.	1.1	116
76	Unusual Kinetic and Structural Properties Control Rapid Assembly and Turnover of Actin in the Parasite Toxoplasma gondii. Molecular Biology of the Cell, 2006, 17, 895-906.	2.1	116
77	A Stem-Cell-Derived Platform Enables Complete Cryptosporidium Development InÂVitro and Genetic Tractability. Cell Host and Microbe, 2019, 26, 123-134.e8.	11.0	116
78	<i>Toxoplasma</i> aldolase is required for metabolism but dispensable for host-cell invasion. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3567-3572.	7.1	115
79	Calcium-mediated protein secretion potentiates motility in Toxoplasma gondii. Journal of Cell Science, 2004, 117, 5739-5748.	2.0	112
80	Just one cross appears capable of dramatically altering the population biology of a eukaryotic pathogen like Toxoplasma gondii. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10514-10519.	7.1	112
81	Aldolase Is Essential for Energy Production and Bridging Adhesin-Actin Cytoskeletal Interactions during Parasite Invasion of Host Cells. Cell Host and Microbe, 2009, 5, 353-364.	11.0	110
82	Rhomboid 4 (ROM4) Affects the Processing of Surface Adhesins and Facilitates Host Cell Invasion by Toxoplasma gondii. PLoS Pathogens, 2010, 6, e1000858.	4.7	109
83	Differential membrane targeting of the secretory proteins GRA4 and GRA6 within the parasitophorous vacuole formed by Toxoplasma gondii. Molecular and Biochemical Parasitology, 1999, 102, 311-324.	1.1	108
84	Artemisinin Induces Calcium-Dependent Protein Secretion in the Protozoan Parasite < i>Toxoplasma gondii < /i> Eukaryotic Cell, 2007, 6, 2147-2156.	3.4	106
85	Calcium Regulation and Signaling in Apicomplexan Parasites. Sub-Cellular Biochemistry, 2008, 47, 70-81.	2.4	104
86	Transmembrane Insertion of the i>Toxoplasma gondii local Protein Occurs after Soluble Secretion into the Host Cell. Molecular Biology of the Cell, 1999, 10, 1277-1287.	2.1	101
87	Toxoplasma gondii infection and its implications within the central nervous system. Nature Reviews Microbiology, 2021, 19, 467-480.	28.6	101
88	Rhoptry Proteins ROP5 and ROP18 Are Major Murine Virulence Factors in Genetically Divergent South American Strains of Toxoplasma gondii. PLoS Genetics, 2015, 11, e1005434.	3.5	99
89	Development of CRISPR/Cas9 for Efficient Genome Editing in Toxoplasma gondii. Methods in Molecular Biology, 2017, 1498, 79-103.	0.9	97
90	Protozoan persister-like cells and drug treatment failure. Nature Reviews Microbiology, 2019, 17, 607-620.	28.6	97

#	Article	IF	Citations
91	miR-146a and miR-155 Delineate a MicroRNA Fingerprint Associated with Toxoplasma Persistence in the Host Brain. Cell Reports, 2014, 6, 928-937.	6.4	96
92	Targeted Disruption of the <i>GRA2 </i> Locus in <i>Toxoplasma gondii </i> Decreases Acute Virulence in Mice. Infection and Immunity, 1998, 66, 4176-4182.	2.2	95
93	Evolutionarily Divergent, Unstable Filamentous Actin Is Essential for Gliding Motility in Apicomplexan Parasites. PLoS Pathogens, 2011, 7, e1002280.	4.7	94
94	Toxoplasma gondii : Perfecting an Intracellular Life Style. Traffic, 2003, 4, 581-586.	2.7	93
95	Gliding Motility Leads to Active Cellular Invasion by Cryptosporidium parvum Sporozoites. Infection and Immunity, 2005, 73, 5379-5387.	2.2	91
96	Toxoplasma gondii infection drives conversion of NK cells into ILC1-like cells. ELife, 2019, 8, .	6.0	91
97	Genetic approaches to studying virulence and pathogenesis in Toxoplasma gondii. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 81-88.	4.0	89
98	How apicomplexan parasites move in and out of cells. Current Opinion in Biotechnology, 2010, 21, 592-598.	6.6	89
99	Calmodulin-like proteins localized to the conoid regulate motility and cell invasion by Toxoplasma gondii. PLoS Pathogens, 2017, 13, e1006379.	4.7	89
100	Genotypic Analysis of Toxoplasma gondii Isolates from Pigs. Journal of Parasitology, 1998, 84, 639.	0.7	88
101	Parasite Fate and Involvement of Infected Cells in the Induction of CD4+ and CD8+ T Cell Responses to Toxoplasma gondii. PLoS Pathogens, 2014, 10, e1004047.	4.7	86
102	Molecular Partitioning during Host Cell Penetration by Toxoplasma gondii. Traffic, 2004, 5, 855-867.	2.7	83
103	Comparative genome analysis reveals a conserved family of actin-like proteins in apicomplexan parasites. BMC Genomics, 2005, 6, 179.	2.8	80
104	Toxoplasma gondii merozoite gene expression analysis with comparison to the life cycle discloses a unique expression state during enteric development. BMC Genomics, 2014, 15, 350.	2.8	80
105	Conditional Knockdown of Proteins Using Auxin-inducible Degron (AID) Fusions in Toxoplasma gondii. Bio-protocol, 2018, 8, .	0.4	80
106	A conserved ankyrin repeat-containing protein regulates conoid stability, motility and cell invasion in Toxoplasma gondii. Nature Communications, 2017, 8, 2236.	12.8	78
107	Essential cGMP Signaling in Toxoplasma Is Initiated by a Hybrid P-Type ATPase-Guanylate Cyclase. Cell Host and Microbe, 2018, 24, 804-816.e6.	11.0	77
108	Phenotypic and Gene Expression Changes among Clonal Type I Strains of <i>Toxoplasma gondii</i> Eukaryotic Cell, 2009, 8, 1828-1836.	3.4	76

#	Article	IF	CITATIONS
109	Congenital Toxoplasmosis in France and the United States: One Parasite, Two Diverging Approaches. PLoS Neglected Tropical Diseases, 2017, 11, e0005222.	3.0	7 5
110	Molecular characterization of a thrombospondin-related anonymous protein homologue in Neospora caninum. Molecular and Biochemical Parasitology, 2000, 107, 33-43.	1.1	74
111	C-terminal Processing of the Toxoplasma Protein MIC2 Is Essential for Invasion into Host Cells. Journal of Biological Chemistry, 2003, 278, 6229-6234.	3.4	74
112	Artemisone and Artemiside Control Acute and Reactivated Toxoplasmosis in a Murine Model. Antimicrobial Agents and Chemotherapy, 2009, 53, 4450-4456.	3.2	74
113	Toxoplasma gondii Strains Defective in Oral Transmission Are Also Defective in Developmental Stage Differentiation. Infection and Immunity, 2007, 75, 2580-2590.	2.2	73
114	Evidence that the cADPR signalling pathway controls calcium-mediated microneme secretion in Toxoplasma gondii. Biochemical Journal, 2005, 389, 269-277.	3.7	69
115	Serum Albumin Stimulates Protein Kinase G-dependent Microneme Secretion in Toxoplasma gondii. Journal of Biological Chemistry, 2016, 291, 9554-9565.	3.4	69
116	Artemisinin-Resistant Mutants of <i>Toxoplasma gondii</i> Have Altered Calcium Homeostasis. Antimicrobial Agents and Chemotherapy, 2007, 51, 3816-3823.	3.2	68
117	The roles of intramembrane proteases in protozoan parasites. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2908-2915.	2.6	66
118	Reassessment of the Role of Aromatic Amino Acid Hydroxylases and the Effect of Infection by Toxoplasma gondii on Host Dopamine. Infection and Immunity, 2015, 83, 1039-1047.	2.2	66
119	Analysis of Noncanonical Calcium-Dependent Protein Kinases in Toxoplasma gondii by Targeted Gene Deletion Using CRISPR/Cas9. Infection and Immunity, 2016, 84, 1262-1273.	2.2	66
120	Phenotypic complementation of genetic immunodeficiency by chronic herpesvirus infection. ELife, 2015, 4, .	6.0	65
121	Novel structural and regulatory features of rhoptry secretory kinases in Toxoplasma gondii. EMBO Journal, 2009, 28, 969-979.	7.8	64
122	Optimizing Small Molecule Inhibitors of Calcium-Dependent Protein Kinase 1 to Prevent Infection by Toxoplasma gondii. Journal of Medicinal Chemistry, 2013, 56, 3068-3077.	6.4	64
123	The unusual dynamics of parasite actin result from isodesmic polymerization. Nature Communications, 2013, 4, 2285.	12.8	62
124	Functional Analysis of Rhomboid Proteases during <i>Toxoplasma</i> Invasion. MBio, 2014, 5, e01795-14.	4.1	61
125	Cell Invasion by Un-Palatable Parasites. Traffic, 2000, 1, 100-106.	2.7	60
126	The arginine-rich N-terminal domain of ROP18 is necessary for vacuole targeting and virulence of <i>Toxoplasma gondii </i> . Cellular Microbiology, 2012, 14, 1921-1933.	2.1	60

#	Article	IF	Citations
127	The moving junction, a key portal to host cell invasion by apicomplexan parasites. Current Opinion in Microbiology, 2012, 15, 449-455.	5.1	59
128	Inhibition of Calcium Dependent Protein Kinase 1 (CDPK1) by Pyrazolopyrimidine Analogs Decreases Establishment and Reoccurrence of Central Nervous System Disease by <i>Toxoplasma gondii</i> Journal of Medicinal Chemistry, 2017, 60, 9976-9989.	6.4	57
129	High prevalence of unusual genotypes of Toxoplasma gondii infection in pork meat samples from Erechim, Southern Brazil. Anais Da Academia Brasileira De Ciencias, 2007, 79, 111-114.	0.8	56
130	Actin depolymerizing factor controls actin turnover and gliding motility in <i>Toxoplasma gondii</i> Molecular Biology of the Cell, 2011, 22, 1290-1299.	2.1	56
131	<i>Toxoplasma gondii</i> effector TgIST blocks type I interferon signaling to promote infection. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17480-17491.	7.1	55
132	The secreted kinase ROP17 promotes Toxoplasma gondii dissemination by hijacking monocyte tissue migration. Nature Microbiology, 2019, 4, 1951-1963.	13.3	55
133	Exploiting the Unique ATP-Binding Pocket of <i>Toxoplasma</i> Calcium-Dependent Protein Kinase 1 To Identify Its Substrates. ACS Chemical Biology, 2013, 8, 1155-1162.	3.4	54
134	Malaria parasite CelTOS targets the inner leaflet of cell membranes for pore-dependent disruption. ELife, 2016, 5, .	6.0	54
135	The Toxoplasma Proteins MIC2 and M2AP Form a Hexameric Complex Necessary for Intracellular Survival. Journal of Biological Chemistry, 2004, 279, 9362-9369.	3.4	53
136	Common inheritance of chromosome la associated with clonal expansion of Toxoplasma gondii. Genome Research, 2006, 16, 1119-1125.	5.5	51
137	Forward Genetics in <i>Toxoplasma gondii</i> Reveals a Family of Rhoptry Kinases That Mediates Pathogenesis. Eukaryotic Cell, 2009, 8, 1085-1093.	3.4	50
138	Monocytes mediate mucosal immunity to Toxoplasma gondii. Current Opinion in Immunology, 2010, 22, 461-466.	5.5	49
139	Genetic Mapping of Pathogenesis Determinants in <i>Toxoplasma gondii</i> . Annual Review of Microbiology, 2016, 70, 63-81.	7.3	49
140	InsP3 Signaling in Apicomplexan Parasites. Current Topics in Medicinal Chemistry, 2017, 17, 2158-2165.	2.1	49
141	Phagocytized Intracellular Microsporidian Blocks Phagosome Acidification and Phagosome-Lysosome Fusion. Journal of Protozoology, 1985, 32, 311-317.	0.8	48
142	Cryo-EM structure of cortical microtubules from human parasite Toxoplasma gondii identifies their microtubule inner proteins. Nature Communications, 2021, 12, 3065.	12.8	48
143	Two Separate, Conserved Acidic Amino Acid Domains within the Toxoplasma gondii MIC2 Cytoplasmic Tail Are Required for Parasite Survival. Journal of Biological Chemistry, 2006, 281, 30745-30754.	3.4	46
144	Microneme Rhomboid Protease TgROM1 Is Required for Efficient Intracellular Growth of <i>Toxoplasma gondii</i> . Eukaryotic Cell, 2008, 7, 664-674.	3.4	46

#	Article	IF	Citations
145	Toxoplasma gondii secreted effectors co-opt host repressor complexes to inhibit necroptosis. Cell Host and Microbe, 2021, 29, 1186-1198.e8.	11.0	46
146	A Monomorphic Haplotype of Chromosome Ia Is Associated with Widespread Success in Clonal and Nonclonal Populations of Toxoplasma gondii. MBio, 2011, 2, e00228-11.	4.1	45
147	Discovery of Selective <i>Toxoplasma gondii</i> Dihydrofolate Reductase Inhibitors for the Treatment of Toxoplasmosis. Journal of Medicinal Chemistry, 2019, 62, 1562-1576.	6.4	43
148	Designing selective inhibitors for calcium-dependent protein kinases in apicomplexans. Trends in Pharmacological Sciences, 2015, 36, 452-460.	8.7	42
149	<i>Toxoplasma</i> Actin Is Required for Efficient Host Cell Invasion. MBio, 2015, 6, e00557.	4.1	41
150	Evaluation of Current and Emerging Antimalarial Medicines for Inhibition of <i>Toxoplasma gondii</i> Growth in Vitro. ACS Infectious Diseases, 2018, 4, 1264-1274.	3.8	41
151	ISG15 Connects Autophagy and IFN- $\hat{\mathbf{I}}^3$ -Dependent Control of Toxoplasma gondii Infection in Human Cells. MBio, 2020, 11 , .	4.1	41
152	<i>Toxoplasma gondii</i> Profilin Acts Primarily To Sequester G-Actin While Formins Efficiently Nucleate Actin Filament Formation <i>in Vitro</i> Biochemistry, 2012, 51, 2486-2495.	2.5	39
153	Geographic Separation of Domestic and Wild Strains of Toxoplasma gondii in French Guiana Correlates with a Monomorphic Version of Chromosome 1a. PLoS Neglected Tropical Diseases, 2014, 8, e3182.	3.0	39
154	Recent origins among ancient parasites. Veterinary Parasitology, 2003, 115, 185-198.	1.8	37
155	The aromatic amino acid hydroxylase genes AAH1 and AAH2 in Toxoplasma gondii contribute to transmission in the cat. PLoS Pathogens, 2017, 13, e1006272.	4.7	34
156	The secreted kinase ROP18 defends <i>Toxoplasma</i> 's border. BioEssays, 2011, 33, 693-700.	2.5	33
157	Inhibition of Calcium-Dependent Protein Kinase 1 (CDPK1) <i>In Vitro</i> by Pyrazolopyrimidine Derivatives Does Not Correlate with Sensitivity of Cryptosporidium parvum Growth in Cell Culture. Antimicrobial Agents and Chemotherapy, 2016, 60, 570-579.	3.2	31
158	NADPH Oxidase and Guanylate Binding Protein 5 Restrict Survival of Avirulent Type III Strains of Toxoplasma gondii in Naive Macrophages. MBio, $2018, 9, .$	4.1	31
159	Monoclonal Antibodies to Intracellular Stages of Cryptosporidium parvum Define Life Cycle Progression <i>In Vitro</i> . MSphere, 2018, 3, .	2.9	31
160	Secreted protein kinases regulate cyst burden during chronic toxoplasmosis. Cellular Microbiology, 2017, 19, e12651.	2.1	30
161	Evolution of resistance in vitro reveals mechanisms of artemisinin activity in <i>Toxoplasma gondii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26881-26891.	7.1	30
162	Defining Stage-Specific Activity of Potent New Inhibitors of Cryptosporidium parvum Growth <i>In Vitro</i> . MBio, 2020, 11, .	4.1	30

#	Article	IF	CITATIONS
163	Genetic Mapping Reveals that Sinefungin Resistance in Toxoplasma gondii Is Controlled by a Putative Amino Acid Transporter Locus That Can Be Used as a Negative Selectable Marker. Eukaryotic Cell, 2015, 14, 140-148.	3.4	29
164	Commensal Cryptosporidium colonization elicits a cDC1-dependent Th1 response that promotes intestinal homeostasis and limits other infections. Immunity, 2021, 54, 2547-2564.e7.	14.3	28
165	Toxoplasma gondii: Microneme protein MIC2. International Journal of Biochemistry and Cell Biology, 2005, 37, 2266-2272.	2.8	27
166	CRISPR-mediated Tagging with BirA Allows Proximity Labeling in Toxoplasma gondii. Bio-protocol, 2018, 8, .	0.4	27
167	A Novel Actin-Related Protein Is Associated with Daughter Cell Formation in Toxoplasma gondii. Eukaryotic Cell, 2008, 7, 1500-1512.	3.4	23
168	Experimental Approaches to Understanding Virulence in Toxoplasmosis. Immunobiology, 1999, 201, 210-224.	1.9	22
169	Development of forward genetics in Toxoplasma gondii. International Journal for Parasitology, 2009, 39, 915-924.	3.1	22
170	Plants, endosymbionts and parasites. Communicative and Integrative Biology, 2008, 1, 62-65.	1.4	20
171	Functional Analysis of the Role of Toxoplasma gondii Nucleoside Triphosphate Hydrolases I and II in Acute Mouse Virulence and Immune Suppression. Infection and Immunity, 2016, 84, 1994-2001.	2.2	20
172	Identification of Small Molecule Inhibitors That Block the <i>Toxoplasma gondii</i> Rhoptry Kinase ROP18. ACS Infectious Diseases, 2016, 2, 194-206.	3.8	20
173	AAH2 gene is not required for dopamine-dependent neurochemical and behavioral abnormalities produced by Toxoplasma infection in mouse. Behavioural Brain Research, 2018, 347, 193-200.	2.2	19
174	Neonatal Mouse Gut Metabolites Influence Cryptosporidium parvum Infection in Intestinal Epithelial Cells. MBio, 2020, 11 , .	4.1	19
175	Synthetic Chondramide A Analogues Stabilize Filamentous Actin and Block Invasion by <i>Toxoplasma gondii</i> . Journal of Natural Products, 2013, 76, 1565-1572.	3.0	18
176	NextGen sequencing reveals short double crossovers contribute disproportionately to genetic diversity in Toxoplasma gondii. BMC Genomics, 2014, 15, 1168.	2.8	17
177	The hitchhiker's guide to parasite dissemination. Cellular Microbiology, 2019, 21, e13070.	2.1	16
178	Overexpression screen of interferon-stimulated genes identifies RARRES3 as a restrictor of Toxoplasma gondii infection. ELife, 2021, 10, .	6.0	15
179	The intrinsically disordered protein TgIST from Toxoplasma gondii inhibits STAT1 signaling by blocking cofactor recruitment. Nature Communications, 2022, 13, .	12.8	15
180	In Vitro Culture of Cryptosporidium parvum Using Stem Cell-Derived Intestinal Epithelial Monolayers. Methods in Molecular Biology, 2020, 2052, 351-372.	0.9	14

#	Article	IF	Citations
181	Optimizing Pyrazolopyrimidine Inhibitors of Calcium Dependent Protein Kinase 1 for Treatment of Acute and Chronic Toxoplasmosis. Journal of Medicinal Chemistry, 2020, 63, 6144-6163.	6.4	14
182	Toxoplasma bradyzoites exhibit physiological plasticity of calcium and energy stores controlling motility and egress. ELife, 2021, 10 , .	6.0	13
183	High Throughput Screen Identifies Interferon Î ³ -Dependent Inhibitors of <i>Toxoplasma gondii</i> Growth. ACS Infectious Diseases, 2018, 4, 1499-1507.	3.8	11
184	CRTAM Protects Against Intestinal Dysbiosis During Pathogenic Parasitic Infection by Enabling Th17 Maturation. Frontiers in Immunology, 2019, 10, 1423.	4.8	11
185	Insulinase-like Protease 1 Contributes to Macrogamont Formation in Cryptosporidium parvum. MBio, 2021, 12, .	4.1	10
186	Chronic $\langle i \rangle$ Toxoplasma gondii $\langle i \rangle$ infection enhances susceptibility to colitis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	10
187	Assays for Monitoring Toxoplasma gondii Infectivity in the Laboratory Mouse. Methods in Molecular Biology, 2020, 2071, 99-116.	0.9	10
188	Reply to "Reproducing Increased Dopamine with Infection To Evaluate the Role of Parasite-Encoded Tyrosine Hydroxylase Activity― Infection and Immunity, 2015, 83, 3336-3337.	2.2	8
189	Secretory Microneme Proteins Induce T-Cell Recall Responses in Mice Chronically Infected with Toxoplasma gondii. MSphere, 2019, 4, .	2.9	8
190	An Important Role for CD4 ⁺ T Cells in Adaptive Immunity to Toxoplasma gondii in Mice Lacking the Transcription Factor Batf3. MSphere, 2020, 5, .	2.9	8
191	Calmodulin-like calcium-binding protein identified in calcium-rich mineral deposits from freshwater mussel gills. The Journal of Experimental Zoology, 1988, 247, 224-231.	1.4	7
192	Typing Single-Nucleotide Polymorphisms in <1>Toxoplasma gondii 1 by Allele-Specific Primer Extension and Microarray Detection., 2004, 270, 249-262.		7
193	Bicyclic azetidines target acute and chronic stages of Toxoplasma gondii by inhibiting parasite phenylalanyl t-RNA synthetase. Nature Communications, 2022, 13, 459.	12.8	7
194	Epigenetic Modifiers Alter Host Cell Transcription to Promote Toxoplasma Infection. ACS Infectious Diseases, 2022, 8, 411-413.	3.8	7
195	Actinâ€like protein 1 (ALP1) is a component of dynamic, high molecular weight complexes in <i>Toxoplasma gondii⟨i⟩. Cytoskeleton, 2010, 67, 23-31.</i>	4.4	6
196	Calcium and cyclic nucleotide signaling networks in Toxoplasma gondii., 2020,, 577-605.		6
197	REDHORSE-REcombination and Double crossover detection in Haploid Organisms using next-geneRation SEquencing data. BMC Genomics, 2015, 16, 133.	2.8	5
198	Forward Genetics in <i>Cryptosporidium</i> Enabled by Complete in Vitro Development in Stem Cell-Derived Intestinal Epithelium. SSRN Electronic Journal, 0, , .	0.4	4

#	Article	IF	CITATIONS
199	High-Throughput Measurement of Microneme Secretion in Toxoplasma gondii. Methods in Molecular Biology, 2020, 2071, 157-169.	0.9	4
200	Development and Application of Classical Genetics in Toxoplasma gondii., 2014,, 551-576.		0