

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1009779/publications.pdf Version: 2024-02-01

SEVAD C

#	Article	IF	CITATIONS
1	Precise and quick detection of ascorbic acid and eugenol in fruits, pharmaceuticals and medicinal herbs using hydroxyapatite-titanium dioxide nanocomposite-based electrode. Food Chemistry, 2022, 382, 132251.	8.2	20
2	Pseudo spin-ladder CaCu2O3 nanostructures as potential electrode material for asymmetric supercapacitors. Journal of Energy Storage, 2022, 48, 104051.	8.1	9
3	HAP-TiO2 nanocomposites based electrochemical sensor for selective and simultaneous detection of para-aminohippuric acid and uric acid. Microchemical Journal, 2022, 181, 107704.	4.5	4
4	Temperature modulated Cu-MOF based gas sensor with dual selectivity to acetone and NO2 at low operating temperatures. Sensors and Actuators B: Chemical, 2021, 329, 129053.	7.8	66
5	Highly efficient non-enzymatic electrochemical determination of histamine based on tungsten trioxide nanoparticles for evaluation of food quality. Journal of Applied Electrochemistry, 2021, 51, 1741-1753.	2.9	11
6	Sensitivity enhancement in rGO/Mn3O4 hybrid nanocomposites: A modified glassy carbon electrode for the simultaneous detection of dopamine and uric acid. Synthetic Metals, 2021, 280, 116859.	3.9	8
7	Enhancement of electrocatalytic activity in tungsten trioxide nanoparticles by UV-light irradiation: Application for simultaneous detection of tyrosine and tryptophan. Sensors and Actuators A: Physical, 2021, 331, 113011.	4.1	4
8	MgNi2O3 nanoparticles as novel and versatile sensing material for non-enzymatic electrochemical sensing of glucose and conductometric determination of acetone. Journal of Alloys and Compounds, 2020, 817, 152787.	5.5	21
9	A novel electrochemical sensor based on Fe-doped MgNi2O3 nanoparticles for simultaneous determination of dopamine, uric acid, nicotine and caffeine over very wide linear ranges. Journal of Electroanalytical Chemistry, 2020, 878, 114648.	3.8	13
10	Fast and selective detection of volatile organic compounds using a novel pseudo spin-ladder compound CaCu ₂ 0 ₃ . Materials Advances, 2020, 1, 2368-2379.	5.4	4
11	Nicotinamide adenine dinucleotide immobilized tungsten trioxide nanoparticles for simultaneous sensing of norepinephrine, melatonin and nicotine. Biosensors and Bioelectronics, 2019, 143, 111598.	10.1	15
12	SnO2-SnS2 nanocomposite as electrocatalyst for simultaneous determination of depression biomarkers serotonin and tryptophan. Journal of Electroanalytical Chemistry, 2019, 840, 1-9.	3.8	31
13	Molybdenum oxide nanoparticles for the sensitive and selective detection of dopamine. Journal of Electroanalytical Chemistry, 2018, 814, 91-96.	3.8	40
14	Low energy nitrogen ion beam implanted tungsten trioxide thin films modified indium tin oxide electrode based acetylcholine sensor. Journal of the Taiwan Institute of Chemical Engineers, 2018, 84, 11-18.	5.3	16
15	Structural Confinement Assisted a Robust Superparamagnetic State in MgNi2O3 and MgNi1.5Co0.5O3 Nanoparticles at Room Temperature. Journal of Superconductivity and Novel Magnetism, 2018, 31, 3777-3785.	1.8	3
16	Electrochemical determination of purine and pyrimidine bases using copper doped cerium oxide nanoparticles. Journal of Colloid and Interface Science, 2018, 530, 202-211.	9.4	19
17	Swift heavy nickel ion irradiated ethylene diamine tetra acetic acid-assisted tungsten trioxide thin film for the electrocatalytic detection of guanine. Sensors and Actuators B: Chemical, 2017, 247, 814-822.	7.8	11
18	Voltammetric determination of epinephrine and xanthine based on sodium dodecyl sulphate assisted tungsten trioxide nanoparticles. Electrochimica Acta, 2017, 237, 44-53.	5.2	32

Sekar C

#	Article	IF	CITATIONS
19	Electrochemical detection of estrus specific phenolic compound p- cresol to assess the reproductive phase of certain farm animals. Biochemical Engineering Journal, 2017, 126, 78-85.	3.6	6
20	Electrochemical sensor for simultaneous determination of epinephrine and norepinephrine based on cetyltrimethylammonium bromide assisted SnO2 nanoparticles. Journal of Electroanalytical Chemistry, 2017, 801, 503-510.	3.8	32
21	Highly sensitive and selective serotonin sensor based on gamma ray irradiated tungsten trioxide nanoparticles. Sensors and Actuators B: Chemical, 2017, 238, 667-675.	7.8	64
22	Effect of gamma irradiation on structural, electrical and gas sensing properties of tungsten oxide nanoparticles. Journal of Alloys and Compounds, 2017, 693, 366-372.	5.5	42
23	Highly sensitive electrochemical sensor for simultaneous determination of dihydroxybenzene isomers based on Co doped SnO ₂ nanoparticles. RSC Advances, 2016, 6, 68211-68219.	3.6	23
24	An ultrasensitive electrochemical sensor for simultaneous determination of xanthine, hypoxanthine and uric acid based on Co doped CeO2 nanoparticles. Materials Science and Engineering C, 2016, 65, 278-286.	7.3	79
25	A novel disposable electrochemical sensor for determination of carbamazepine based on Fe doped SnO2 nanoparticles modified screen-printed carbon electrode. Materials Science and Engineering C, 2016, 62, 53-60.	7.3	45
26	Electrochemical sensor for simultaneous determination of ascorbic acid, uric acid and folic acid based on Mn-SnO2 nanoparticles modified glassy carbon electrode. Journal of Electroanalytical Chemistry, 2016, 770, 23-32.	3.8	86
27	A new strategy for simultaneous determination of 4-aminophenol, uric acid and nitrite based on a graphene/hydroxyapatite composite modified glassy carbon electrode. RSC Advances, 2015, 5, 52703-52709.	3.6	24
28	Electrochemical detection of mercury using biosynthesized hydroxyapatite nanoparticles modified glassy carbon electrodes without preconcentration. RSC Advances, 2015, 5, 68587-68594.	3.6	66
29	WO3 nanoparticles based direct electrochemical dopamine sensor in the presence of ascorbic acid. Electrochimica Acta, 2015, 167, 294-302.	5.2	131
30	Simultaneous electrochemical determination of epinephrine and uric acid in the presence of ascorbic acid using SnO2/graphene nanocomposite modified glassy carbon electrode. Sensors and Actuators B: Chemical, 2015, 221, 1412-1422.	7.8	99
31	Development of electrochemical folic acid sensor based on hydroxyapatite nanoparticles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 137, 58-65.	3.9	48
32	Development of amperometric l-tyrosine sensor based on Fe-doped hydroxyapatite nanoparticles. Materials Science and Engineering C, 2014, 35, 85-91.	7.3	63
33	Fabrication of folic acid sensor based on the Cu doped SnO ₂ nanoparticles modified glassy carbon electrode. Nanotechnology, 2014, 25, 295501.	2.6	41
34	EDTA assisted synthesis of hydroxyapatite nanoparticles for electrochemical sensing of uric acid. Materials Science and Engineering C, 2014, 42, 601-607.	7.3	44
35	Effect of divalent metal ion impurities (Ba2+, Ca2+ and Mg2+) on the growth, structural and physical properties of KAP crystals. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 103, 187-192.	3.9	13
36	Effect of trivalent metal ion impurities (Al3+, Cr3+ and Fe3+) on the growth, structural and physical properties of potassium acid phthalate (KAP) crystals. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 112, 21-26.	3.9	6

Sekar C

#	Article	IF	CITATIONS
37	Fabrication of Cr doped SnO2 nanoparticles based biosensor for the selective determination of riboflavin in pharmaceuticals. Analyst, The, 2013, 138, 2061.	3.5	98
38	Fabrication of hydrogen peroxide biosensor based on Ni doped SnO2 nanoparticles. Biosensors and Bioelectronics, 2012, 36, 41-47.	10.1	85
39	Growth, spectral, structural and mechanical properties of struvite crystal grown in presence of sodium fluoride. Bulletin of Materials Science, 2012, 35, 701-706.	1.7	36
40	Effect of amino acid additives on the growth and physical properties of potassium acid phthalate (KAP) crystals. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 91, 370-374.	3.9	16
41	Synthesis of tungsten oxide (W18O49) nanosheets utilizing EDTA salt by microwave irradiation method. Journal of Alloys and Compounds, 2011, 509, 4788-4792.	5.5	35
42	Synthesis of polyethylene glycol (PEG) assisted tungsten oxide (WO3) nanoparticles for l-dopa bio-sensing applications. Talanta, 2011, 85, 2166-2174.	5.5	92
43	High-sensitivity humidity sensor based on SnO2 nanoparticles synthesized by microwave irradiation method. Materials Science and Engineering C, 2011, 31, 840-844.	7.3	167
44	Crystal growth and spectral studies of nonlinear optical γ-glycine single crystal grown from phosphoric acid. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 76, 490-495.	3.9	46
45	Influence of sodium fluoride on the synthesis of hydroxyapatite by gel method. Journal of Crystal Growth, 2010, 312, 808-816.	1.5	35
46	Pressure-induced spin reorientation in La1.2Sr1.8(Mn1â^'yRuy)2O7 (y=0 and 0.075) single crystals. Journal of Applied Physics, 2009, 106, 103908.	2.5	3
47	Effect of fluorides (KF and NaF) on the growth of dicalcium phosphate dihydrate (DCPD) crystal. Materials Chemistry and Physics, 2009, 115, 21-27.	4.0	16
48	Effect of KCl addition on crystal growth and spectral properties of glycine single crystals. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 74, 1160-1164.	3.9	40
49	Effect of Zn doping on crystal growth and structure of the pseudo-ladder compound CaCu2O3. Journal of Crystal Growth, 2005, 273, 403-411.	1.5	11