Thomas Georg Roitsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1009540/publications.pdf Version: 2024-02-01

		41258	34900
137	10,393	49	98
papers	citations	h-index	g-index
141	141	141	9512
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The cytokinin-producing plant beneficial bacterium Pseudomonas fluorescens G20-18 primes tomato (Solanum lycopersicum) for enhanced drought stress responses. Journal of Plant Physiology, 2022, 270, 153629.	1.6	27
2	Extracellular Glycolytic Activities in Root Endophytic Serendipitaceae and Their Regulation by Plant Sugars. Microorganisms, 2022, 10, 320.	1.6	3
3	Inoculation of tomato (Solanum lycopersicum) roots with growth promoting Pseudomonas strains induces distinct local and systemic metabolic biosignatures. Physiological and Molecular Plant Pathology, 2022, 117, 101757.	1.3	4
4	Functional phenomics for improved climate resilience in Nordic agriculture. Journal of Experimental Botany, 2022, 73, 5111-5127.	2.4	10
5	Enzyme activity profiling for physiological phenotyping within functional phenomics: plant growth and stress responses. Journal of Experimental Botany, 2022, 73, 5170-5198.	2.4	8
6	Tomato growth promotion by the fungal endophytes Serendipita indica and Serendipita herbamans is associated with sucrose de-novo synthesis in roots and differential local and systemic effects on carbohydrate metabolisms and gene expression. Journal of Plant Physiology, 2022, 276, 153755.	1.6	11
7	Photoprotection and optimization of sucrose usage contribute to faster recovery of photosynthesis after water deficit at high temperatures in wheat. Physiologia Plantarum, 2021, 172, 615-628.	2.6	10
8	New Cross-Talks between Pathways Involved in Grapevine Infection with â€~Candidatus Phytoplasma solani' Revealed by Temporal Network Modelling. Plants, 2021, 10, 646.	1.6	3
9	Differential Response of Grapevine to Infection with â€~Candidatus Phytoplasma solani' in Early and Late Growing Season through Complex Regulation of mRNA and Small RNA Transcriptomes. International Journal of Molecular Sciences, 2021, 22, 3531.	1.8	10
10	Elevated carbon dioxide alleviates the negative impact of drought on wheat by modulating plant metabolism and physiology. Agricultural Water Management, 2021, 250, 106804.	2.4	23
11	Identification of a bio-signature for barley resistance against Pyrenophora teres infection based on physiological, molecular and sensor-based phenotyping. Plant Science, 2021, 313, 111072.	1.7	9
12	Identification of Root-Associated Bacteria That Influence Plant Physiology, Increase Seed Germination, or Promote Growth of the Christmas Tree Species Abies nordmanniana. Frontiers in Microbiology, 2020, 11, 566613.	1.5	13
13	Activities of leaf and spike carbohydrate-metabolic and antioxidant enzymes are linked with yield performance in three spring wheat genotypes grown under well-watered and drought conditions. BMC Plant Biology, 2020, 20, 400.	1.6	37
14	Earlyâ€ s tage sugar beet taproot development is characterized by three distinct physiological phases. Plant Direct, 2020, 4, e00221.	0.8	13
15	Burkholderia Phytofirmans PsJN Stimulate Growth and Yield of Quinoa under Salinity Stress. Plants, 2020, 9, 672.	1.6	30
16	Simple semi-high throughput determination of activity signatures of key antioxidant enzymes for physiological phenotyping. Plant Methods, 2020, 16, 42.	1.9	45
17	Bacillus licheniformis FMCH001 Increases Water Use Efficiency via Growth Stimulation in Both Normal and Drought Conditions. Frontiers in Plant Science, 2020, 11, 297.	1.7	57
18	Amylopectin Chain Length Dynamics and Activity Signatures of Key Carbon Metabolic Enzymes Highlight Early Maturation as Culprit for Yield Reduction of Barley Endosperm Starch after Heat Stress. Plant and Cell Physiology, 2019, 60, 2692-2706.	1.5	12

#	Article	IF	CITATIONS
19	Accumulation of and Response to Auxins in Roots and Nodules of the Actinorhizal Plant Datisca glomerata Compared to the Model Legume Medicago truncatula. Frontiers in Plant Science, 2019, 10, 1085.	1.7	10
20	Physiological phenotyping of mammalian cell lines by enzymatic activity fingerprinting of key carbohydrate metabolic enzymes: a pilot and feasibility study. BMC Research Notes, 2019, 12, 682.	0.6	4
21	Noninvasive determination of toxic stress biomarkers by high-throughput screening of photoautotrophic cell suspension cultures with multicolor fluorescence imaging. Plant Methods, 2019, 15, 100.	1.9	5
22	Noninvasive Phenotyping of Plant–Pathogen Interaction: Consecutive In Situ Imaging of Fluorescing Pseudomonas syringae, Plant Phenolic Fluorescence, and Chlorophyll Fluorescence in Arabidopsis Leaves. Frontiers in Plant Science, 2019, 10, 1239.	1.7	16
23	Root-Associated Microbial Communities of Abies nordmanniana: Insights Into Interactions of Microbial Communities With Antioxidative Enzymes and Plant Growth. Frontiers in Microbiology, 2019, 10, 1937.	1.5	24
24	Review: New sensors and data-driven approaches—A path to next generation phenomics. Plant Science, 2019, 282, 2-10.	1.7	129
25	Role of Cytokinins for Interactions of Plants With Microbial Pathogens and Pest Insects. Frontiers in Plant Science, 2019, 10, 1777.	1.7	126
26	A transnational and holistic breeding approach is needed for sustainable wheat production in the Baltic Sea region. Physiologia Plantarum, 2018, 164, 442-451.	2.6	36
27	Integration of multi-omics techniques and physiological phenotyping within a holistic phenomics approach to study senescence in model and crop plants. Journal of Experimental Botany, 2018, 69, 825-844.	2.4	104
28	Advancement of the cultivation and upscaling of photoautotrophic suspension cultures using Chenopodium rubrum as a case study. Plant Cell, Tissue and Organ Culture, 2018, 135, 37-51.	1.2	4
29	Screening of Barley Resistance Against Powdery Mildew by Simultaneous High-Throughput Enzyme Activity Signature Profiling and Multispectral Imaging. Frontiers in Plant Science, 2018, 9, 1074.	1.7	27
30	Modulating the Levels of Plant Hormone Cytokinins at the Host-Pathogen Interface. Methods in Molecular Biology, 2017, 1569, 141-150.	0.4	1
31	Differential Effects of Carbohydrates on Arabidopsis Pollen Germination. Plant and Cell Physiology, 2017, 58, 691-701.	1.5	43
32	Metabolic Control of Tobacco Pollination by Sugars and Invertases. Plant Physiology, 2017, 173, 984-997.	2.3	67
33	Stress Response Monitoring of Photoautotrophic Higher Plant Suspension Cultures by Fluorescence Imaging for High-Throughput Toxic Compound Screening. Journal of Environmental Protection, 2017, 08, 678-692.	0.3	3
34	Metabolic Consequences of Infection of Grapevine (Vitis vinifera L.) cv. "Modra frankinja―with Flavescence Dorée Phytoplasma. Frontiers in Plant Science, 2016, 7, 711.	1.7	69
35	Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis. Scientific Reports, 2016, 6, 23310.	1.6	148
36	Structure of a Berberine Bridge Enzyme-Like Enzyme with an Active Site Specific to the Plant Family Brassicaceae. PLoS ONE, 2016, 11, e0156892.	1.1	30

#	Article	IF	CITATIONS
37	Determination of the Activity Signature of Key Carbohydrate Metabolism Enzymes in Phenolic-rich Grapevine Tissues. Acta Chimica Slovenica, 2016, 63, 757-762.	0.2	8
38	A Simple and Fast Kinetic Assay for the Determination of Fructan Exohydrolase Activity in Perennial Ryegrass (Lolium perenne L.). Frontiers in Plant Science, 2015, 6, 1154.	1.7	9
39	Simple and robust determination of the activity signature of key carbohydrate metabolism enzymes for physiological phenotyping in model and crop plants. Journal of Experimental Botany, 2015, 66, 5531-5542.	2.4	83
40	Differences between winter oilseed rape (Brassica napus L.) cultivars in nitrogen starvation-induced leaf senescence are governed by leaf-inherent rather than root-derived signals. Journal of Experimental Botany, 2015, 66, 3669-3681.	2.4	29
41	The Arabidopsis PLAT domain protein1 promotes abiotic stress tolerance and growth in tobacco. Transgenic Research, 2015, 24, 651-663.	1.3	16
42	Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap. Journal of Experimental Botany, 2015, 66, 5429-5440.	2.4	217
43	Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato. Journal of Experimental Botany, 2015, 66, 863-878.	2.4	75
44	Exogenous Classic Phytohormones Have Limited Regulatory Effects on Fructan and Primary Carbohydrate Metabolism in Perennial Ryegrass (Lolium perenne L.). Frontiers in Plant Science, 2015, 6, 1251.	1.7	16
45	The Arabidopsis PLAT Domain Protein1 Is Critically Involved in Abiotic Stress Tolerance. PLoS ONE, 2014, 9, e112946.	1.1	47
46	Development of a Mobile Multispectral Imaging Platform for Precise Field Phenotyping. Agronomy, 2014, 4, 322-336.	1.3	53
47	Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity. Journal of Experimental Botany, 2014, 65, 6081-6095.	2.4	61
48	A Rapid Phytohormone and Phytoalexin Screening Method for Physiological Phenotyping. Molecular Plant, 2014, 7, 1053-1056.	3.9	50
49	Abscisic Acid–Cytokinin Antagonism Modulates Resistance Against <i>Pseudomonas syringae</i> in Tobacco. Phytopathology, 2014, 104, 1283-1288.	1.1	28
50	Cis- and trans-zeatin differentially modulate plant immunity. Plant Signaling and Behavior, 2013, 8, e24798.	1.2	52
51	Physiological and molecular analysis of the interaction between aluminium toxicity and drought stress in common bean (Phaseolus vulgaris). Journal of Experimental Botany, 2012, 63, 3109-3125.	2.4	61
52	Phytoalexin transgenics in crop protection—Fairy tale with a happy end?. Plant Science, 2012, 195, 54-70.	1.7	79
53	Establishment of a Photoautotrophic Cell Suspension Culture of Arabidopsis thaliana for Photosynthetic, Metabolic, and Signaling Studies. Molecular Plant, 2012, 5, 524-527.	3.9	20
54	Compartment-Specific Antioxidative Defense in <i>Arabidopsis</i> Against Virulent and Avirulent <i>Pseudomonas syringae</i> . Phytopathology, 2012, 102, 662-673.	1.1	47

THOMAS GEORG ROITSCH

#	Article	IF	CITATIONS
55	Deficiency in riboflavin biosynthesis affects tetrapyrrole biosynthesis in etiolated Arabidopsis tissue. Plant Molecular Biology, 2012, 78, 77-93.	2.0	32
56	Extracellular invertase is involved in the regulation of clubroot disease in <i>Arabidopsis thaliana</i> . Molecular Plant Pathology, 2011, 12, 247-262.	2.0	91
57	Synthesis of distinctly different sets of antimicrobial activities by elicited plant cell suspension cultures. Plant Cell, Tissue and Organ Culture, 2011, 106, 105-113.	1.2	6
58	Metabolically engineered male sterility in rapeseed (Brassica napus L.). Theoretical and Applied Genetics, 2011, 122, 163-174.	1.8	14
59	Role of α-tocopherol in cellular signaling: α-tocopherol inhibits stress-induced mitogen-activated protein kinase activation. Plant Biotechnology Reports, 2011, 5, 19-25.	0.9	11
60	Cytokinins Mediate Resistance against <i>Pseudomonas syringae</i> in Tobacco through Increased Antimicrobial Phytoalexin Synthesis Independent of Salicylic Acid Signaling Â. Plant Physiology, 2011, 157, 815-830.	2.3	178
61	Trisubstituted Purines Are Useful Tools for Developing Potent Plant Mitogen-Activated Protein Kinase Inhibitors. Bioscience, Biotechnology and Biochemistry, 2010, 74, 553-557.	0.6	1
62	Rapid Determination of Cytokinins and Auxin in Cyanobacteria. Current Microbiology, 2010, 61, 361-369.	1.0	64
63	Spatial and temporal dynamics of peroxidase and amine oxidase activity is linked to polyamines and lignin in wheat grains. Biologia Plantarum, 2010, 54, 525-529.	1.9	8
64	Nuclear targeted AtS40 modulates senescence associated gene expression in Arabidopsis thaliana during natural development and in darkness. Plant Molecular Biology, 2010, 73, 379-390.	2.0	40
65	Homo- and heterodimers of tobacco bZIP proteins counteract as positive or negative regulators of transcription during pollen development. Plant Journal, 2010, 63, no-no.	2.8	38
66	A role for PSK signaling in wounding and microbial interactions in Arabidopsis. Physiologia Plantarum, 2010, 139, no-no.	2.6	42
67	Post-Translational Derepression of Invertase Activity in Source Leaves via Down-Regulation of Invertase Inhibitor Expression Is Part of the Plant Defense Response. Molecular Plant, 2010, 3, 1037-1048.	3.9	105
68	<i>Hovenia dulcis</i> – An Asian Traditional Herb. Planta Medica, 2010, 76, 943-949.	0.7	91
69	Anther-specific carbohydrate supply and restoration of metabolically engineered male sterility. Journal of Experimental Botany, 2010, 61, 2693-2706.	2.4	48
70	Interspecies compatibility of the anther specific cell wall invertase promoters from Arabidopsis and tobacco for generating male sterile plants. Theoretical and Applied Genetics, 2009, 118, 235-245.	1.8	43
71	Extracellular invertase LIN6 of tomato: a pivotal enzyme for integration of metabolic, hormonal, and stress signals is regulated by a diurnal rhythm. Journal of Experimental Botany, 2009, 60, 1555-1567.	2.4	76
72	Tomato mitogen activated protein kinases regulate the expression of extracellular invertase Lin6 in response to stress related stimuli. Functional Plant Biology, 2009, 36, 1088.	1.1	13

THOMAS GEORG ROITSCH

#	Article	IF	CITATIONS
73	The AOC promoter of tomato is regulated by developmental and environmental stimuli. Phytochemistry, 2008, 69, 1859-1869.	1.4	38
74	Cloning and characterization of a novel LpWRKY1 transcription factor in tomato. Plant Physiology and Biochemistry, 2008, 46, 533-540.	2.8	15
75	Metabolic regulation of leaf senescence: interactions of sugar signalling with biotic and abiotic stress responses. Plant Biology, 2008, 10, 50-62.	1.8	236
76	General Detoxification and Stress Responses Are Mediated by Oxidized Lipids through TGA Transcription Factors in <i>Arabidopsis</i> Â. Plant Cell, 2008, 20, 768-785.	3.1	308
77	Regulation of Arbuscular Mycorrhization by Carbon. The Symbiotic Interaction Cannot Be Improved by Increased Carbon Availability Accomplished by Root-Specifically Enhanced Invertase Activity. Plant Physiology, 2007, 143, 1827-1840.	2.3	67
78	Visualization of dynamics of plant–pathogen interaction by novel combination of chlorophyll fluorescence imaging and statistical analysis: differential effects of virulent and avirulent strains of P. syringae and of oxylipins on A. thaliana. Journal of Experimental Botany, 2007, 58, 797-806.	2.4	165
79	Regulation of Arbuscular Mycorrhization by Carbon. The Symbiotic Interaction Cannot Be Improved by Increased Carbon Availability Accomplished by Root-Specifically Enhanced Invertase Activity. Plant Physiology, 2007, 143, 1827-1840.	2.3	65
80	Plant physiology meets phytopathology: plant primary metabolism and plant pathogen interactions. Journal of Experimental Botany, 2007, 58, 4019-4026.	2.4	635
81	Mechanisms of Electrically Mediated Cytosolic Ca2+ Transients in Aequorin-Transformed Tobacco Cells. Biophysical Journal, 2007, 93, 3324-3337.	0.2	8
82	Expression of the recombinant bacterial outer surface protein A in tobacco chloroplasts leads to thylakoid localization and loss of photosynthesis. FEBS Journal, 2007, 274, 5749-5758.	2.2	44
83	Case study of combinatorial imaging: What protocol and what chlorophyll fluorescence image to use when visualizing infection of Arabidopsis thaliana by Pseudomonas syringae?. Photosynthesis Research, 2007, 90, 243-253.	1.6	37
84	Metabolic control of seedling development by invertases. Functional Plant Biology, 2007, 34, 508.	1.1	13
85	Calcium ions are involved in the delay of plant cell cycle progression by abiotic stresses. FEBS Letters, 2006, 580, 597-602.	1.3	31
86	Cloning of a CACTA transposon-like insertion in intron I of tomato invertase Lin5 gene and identification of transposase-like sequences of Solanaceae species. Journal of Plant Physiology, 2006, 163, 562-569.	1.6	1
87	The developmental andÂorgan specific expression ofÂsucrose cleaving enzymes inÂsugar beet suggests aÂtransition between apoplasmic andÂsymplasmic phloem unloading inÂtheÂtap roots. Plant Physiology and Biochemistry, 2006, 44, 656-665.	2.8	43
88	Infection with virulent and avirulent P. syringae strains differentially affects photosynthesis and sink metabolism in Arabidopsis leaves. Planta, 2006, 225, 1-12.	1.6	205
89	Gibberellin-dependent induction of tomato extracellular invertase Lin7 is required for pollen development. Functional Plant Biology, 2006, 33, 547.	1.1	33
90	Arbuscular mycorrhiza induces gene expression of the apoplastic invertase LIN6 in tomato (Lycopersicon esculentum) roots. Journal of Experimental Botany, 2006, 57, 4015-4023.	2.4	120

THOMAS GEORG ROITSCH

#	Article	IF	CITATIONS
91	Circadian and developmental regulation of vacuolar invertase expression in petioles of sugar beet plants. Planta, 2005, 222, 386-395.	1.6	38
92	Extracellular Invertase Is an Essential Component of Cytokinin-Mediated Delay of Senescence[W]. Plant Cell, 2004, 16, 1276-1287.	3.1	316
93	Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato. Physiologia Plantarum, 2004, 122, 419-428.	2.6	249
94	Function and regulation of plant invertases: sweet sensations. Trends in Plant Science, 2004, 9, 606-613.	4.3	761
95	Plant Response to Stress: Sourceâ€6ink Regulation by Stress. , 2004, , 1010-1013.		8
96	Novel mode of hormone induction of tandem tomato invertase genes in floral tissues. Plant Molecular Biology, 2003, 52, 191-201.	2.0	34
97	Cyclopentenone isoprostanes induced by reactive oxygen species trigger defense gene activation and phytoalexin accumulation in plants. Plant Journal, 2003, 34, 363-375.	2.8	213
98	Extracellular invertase: key metabolic enzyme and PR protein. Journal of Experimental Botany, 2003, 54, 513-524.	2.4	362
99	Biochemical Evidence for the Activation of Distinct Subsets of Mitogen-Activated Protein Kinases by Voltage and Defense-Related Stimuli. Plant Physiology, 2002, 128, 271-281.	2.3	43
100	Local expression of the ipt gene in transgenic tobacco (Nicotiana tabacum L. cv. SR1) axillary buds establishes a role for cytokinins in tuberization and sink formation. Journal of Experimental Botany, 2002, 53, 621-629.	2.4	70
101	Metabolizable and Non-Metabolizable Sugars Activate Different Signal Transduction Pathways in Tomato. Plant Physiology, 2002, 128, 1480-1489.	2.3	146
102	A heat-activated MAP kinase in tomato: a possible regulator of the heat stress response. FEBS Letters, 2002, 531, 179-183.	1.3	67
103	Application of Photoautotrophic Suspension Cultures in Plant Science. Photosynthetica, 2002, 40, 481-492.	0.9	21
104	Biochemical evidence for the activation of distinct subsets of mitogen-activated protein kinases by voltage and defense-related stimuli. Plant Physiology, 2002, 128, 271-81.	2.3	8
105	Effect of Different Sugars on Photosynthesis and Chlorophyll Fluorescence in Photoautotrophic Tomato Suspension Cell Cultures. Photosynthetica, 2001, 39, 611-614.	0.9	10
106	Induction of male sterility in plants by metabolic engineering of the carbohydrate supply. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 6522-6527.	3.3	294
107	Tissue-specific induction of the mRNA for an extracellular invertase isoenzyme of tomato by brassinosteroids suggests a role for steroid hormones in assimilate partitioning. Plant Journal, 2000, 22, 515-522.	2.8	70
108	Regulation of source/sink relations by cytokinins. Plant Growth Regulation, 2000, 32, 359-367.	1.8	214

#	Article	IF	CITATIONS
109	Identification of amino acids essential for enzymatic activity of plant invertases. Journal of Plant Physiology, 2000, 157, 581-585.	1.6	17
110	The hexokinase inhibitor glucosamine exerts a concentration dependent dual effect on protein kinase activity in vitro. Journal of Plant Physiology, 2000, 157, 13-16.	1.6	26
111	Regulation and function of extracellular invertase from higher plants in relation to assimilate partitioning, stress responses and sugar signalling. Functional Plant Biology, 2000, 27, 815.	1.1	23
112	The different pH optima and substrate specificities of extracellular and vacuolar invertases from plants are determined by a single amino-acid substitution. Plant Journal, 1999, 20, 707-711.	2.8	74
113	Source-sink regulation by sugar and stress. Current Opinion in Plant Biology, 1999, 2, 198-206.	3.5	506
114	Intracellular Protons are not Involved in Elicitor Dependent Regulation of mRNAs for Defence Related Enzymes in Chenopodium rubrum. Journal of Plant Physiology, 1999, 155, 527-532.	1.6	8
115	Glucose and Stress Independently Regulate Source and Sink Metabolism and Defense Mechanisms via Signal Transduction Pathways Involving Protein Phosphorylation. Plant Cell, 1997, 9, 1825.	3.1	59
116	Regulation and Tissue-Specific Distribution of mRNAs for Three Extracellular Invertase Isoenzymes of Tomato Suggests an Important Function in Establishing and Maintaining Sink Metabolism. Plant Physiology, 1997, 115, 273-282.	2.3	213
117	Differential effect of D-glucose on the level of mRNAs for three invertase isoenzymes of Chenopodium rubrum. Journal of Plant Physiology, 1997, 150, 514-519.	1.6	16
118	Co-ordinated induction of mRNAs for extracellular invertase and a glucose transporter in Chenopodium rubrum by cytokinins. Plant Journal, 1997, 11, 539-548.	2.8	212
119	Cell Wall Invertase: Bridging the Gap. Botanica Acta, 1996, 109, 90-93.	1.6	35
120	Ethylene regulation of apoplastic invertase expression in autotrophic cells of Chenopodium rubrum. Plant Growth Regulation, 1996, 19, 219-222.	1.8	24
121	Induction of Apoplastic Invertase of Chenopodium rubrum by D-Glucose and a Glucose Analog and Tissue-Specific Expression Suggest a Role in Sink-Source Regulation. Plant Physiology, 1995, 108, 285-294.	2.3	221
122	Regulation of Sucrose Synthase Expression in Chenopodium rubrum: Characterization of Sugar Induced Expression in Photoautotrophic Suspension Cultures and Sink Tissue Specific Expression in Plants. Journal of Plant Physiology, 1995, 146, 231-238.	1.6	60
123	Expression of a sugar-transporter gene family in a photoautotrophic suspension culture of Chenopodium rubrum L. Planta, 1994, 193, 365-71.	1.6	46
124	The binding site of the transcriptional activator VirG fromAgrobacteriumcomprises both conserved and specific nonconserved sequences. FEBS Letters, 1994, 338, 127-132.	1.3	8
125	The vacuolar protein-targeting signal of yeast carboxypeptidase is functional in oocytes from Xenopus laevis. FEBS Journal, 1991, 195, 145-150.	0.2	5
126	The regulatory VirG protein specifically binds to a cis-acting regulatory sequence involved in transcriptional activation of Agrobacterium tumefaciens virulence genes. Journal of Bacteriology, 1990, 172, 531-537.	1.0	138

#	Article	IF	CITATIONS
127	The VirA protein of Agrobacterium tumefaciens is autophosphorylated and is essential for vir gene regulation. Journal of Bacteriology, 1990, 172, 525-530.	1.0	188
128	Phosphorylation of the VirG protein of Agrobacterium tumefaciens by the autophosphorylated VirA protein: essential role in biological activity of VirG. Journal of Bacteriology, 1990, 172, 4945-4950.	1.0	190
129	Mutational analysis of the VirG protein, a transcriptional activator of Agrobacterium tumefaciens virulence genes. Journal of Bacteriology, 1990, 172, 6054-6060.	1.0	45
130	Structural requirements for protein N-glycosylation. Influence of acceptor peptides on cotranslational glycosylation of yeast invertase and site-directed mutagenesis around a sequon sequence. FEBS Journal, 1989, 181, 525-529.	0.2	77
131	Expression of yeast invertase in oocytes from Xenopus laevis. Secretion of active enzyme differing in glycosylation. FEBS Journal, 1989, 181, 733-739.	0.2	18
132	Requirements for efficient in vitro transcription and translation: a study using yeast invertase as a probe. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1989, 1009, 19-26.	2.4	6
133	Post-translational translocation of polypeptides across the mammalian endoplasmic reticulum membrane is size and ribosome dependent. FEBS Journal, 1988, 174, 699-705.	0.2	16
134	Synthesis of dissimilatory enzymes of serine type methylotrophs under different growth conditions. Archives of Microbiology, 1986, 144, 245-247.	1.0	24
135	Overproduction of methanol dehydrogenase in glucose grown cells of a restricted RuMP type methylotroph. Archives of Microbiology, 1985, 142, 34-39.	1.0	21
136	Distribution of dissimilatory enzymes in methane and methanol oxidizing bacteria. Archives of Microbiology, 1985, 143, 233-236.	1.0	15
137	Silver Nanoparticles Affect Arabidopsis thaliana Leaf Tissue Integrity and Suppress Pseudomonas syringae Infection Symptoms in a Dose-Dependent Manner. BioNanoScience, 0, , .	1.5	1