Concha Bielza

List of Publications by Citations

Source: https://exaly.com/author-pdf/1009510/concha-bielza-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

182 3,798 56 29 h-index g-index citations papers 4,699 5.56 200 3.9 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
182	New insights into the classification and nomenclature of cortical GABAergic interneurons. <i>Nature Reviews Neuroscience</i> , 2013 , 14, 202-16	13.5	532
181	Machine learning in bioinformatics. <i>Briefings in Bioinformatics</i> , 2006 , 7, 86-112	13.4	484
180	A survey on multi-output regression. <i>Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery</i> , 2015 , 5, 216-233	6.9	208
179	Multi-dimensional classification with Bayesian networks. <i>International Journal of Approximate Reasoning</i> , 2011 , 52, 705-727	3.6	125
178	Discrete Bayesian Network Classifiers. ACM Computing Surveys, 2014 , 47, 1-43	13.4	124
177	Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process. <i>Expert Systems With Applications</i> , 2009 , 36, 7270-7279	7.8	116
176	A review on evolutionary algorithms in Bayesian network learning and inference tasks. <i>Information Sciences</i> , 2013 , 233, 109-125	7.7	88
175	A community-based transcriptomics classification and nomenclature of neocortical cell types. <i>Nature Neuroscience</i> , 2020 , 23, 1456-1468	25.5	76
174	Multi-label classification with Bayesian network-based chain classifiers. <i>Pattern Recognition Letters</i> , 2014 , 41, 14-22	4.7	74
173	Comparison between supervised and unsupervised classifications of neuronal cell types: a case study. <i>Developmental Neurobiology</i> , 2011 , 71, 71-82	3.2	63
172	Multiobjective Estimation of Distribution Algorithm Based on Joint Modeling of Objectives and Variables. <i>IEEE Transactions on Evolutionary Computation</i> , 2014 , 18, 519-542	15.6	60
171	A review on probabilistic graphical models in evolutionary computation. <i>Journal of Heuristics</i> , 2012 , 18, 795-819	1.9	60
170	Parkinson's Disease Subtypes Identified from Cluster Analysis of Motor and Non-motor Symptoms. <i>Frontiers in Aging Neuroscience</i> , 2017 , 9, 301	5.3	55
169	A Survey of L1 Regression. <i>International Statistical Review</i> , 2013 , 81, 361-387	1.4	55
168	Bayesian networks in neuroscience: a survey. Frontiers in Computational Neuroscience, 2014 , 8, 131	3.5	53
167	Three-dimensional spatial distribution of synapses in the neocortex: a dual-beam electron microscopy study. <i>Cerebral Cortex</i> , 2014 , 24, 1579-88	5.1	51
166	A review of estimation of distribution algorithms in bioinformatics. <i>BioData Mining</i> , 2008 , 1, 6	4.3	46

165	Decision Analysis by Augmented Probability Simulation. <i>Management Science</i> , 1999 , 45, 995-1007	3.9	43
164	Unveiling relevant non-motor Parkinsons disease severity symptoms using a machine learning approach. <i>Artificial Intelligence in Medicine</i> , 2013 , 58, 195-202	7.4	42
163	Predicting dementia development in Parkinson's disease using Bayesian network classifiers. <i>Psychiatry Research - Neuroimaging</i> , 2013 , 213, 92-8	2.9	42
162	Regularized logistic regression without a penalty term: An application to cancer classification with microarray data. <i>Expert Systems With Applications</i> , 2011 , 38, 5110-5118	7.8	42
161	On time-dependent wavelet denoising. IEEE Transactions on Signal Processing, 1998, 46, 2549-2554	4.8	39
160	A Comparison of Graphical Techniques for Asymmetric Decision Problems. <i>Management Science</i> , 1999 , 45, 1552-1569	3.9	39
159	Three-dimensional distribution of cortical synapses: a replicated point pattern-based analysis. <i>Frontiers in Neuroanatomy</i> , 2014 , 8, 85	3.6	36
158	A Bayesian network model for surface roughness prediction in the machining process. <i>International Journal of Systems Science</i> , 2008 , 39, 1181-1192	2.3	36
157	A comparison of clustering quality indices using outliers and noise. <i>Intelligent Data Analysis</i> , 2012 , 16, 703-715	1.1	34
156	. IEEE Transactions on Knowledge and Data Engineering, 2014 , 26, 1720-1733	4.2	31
156 155	. IEEE Transactions on Knowledge and Data Engineering, 2014, 26, 1720-1733 Mateda-2.0: AMATLABPackage for the Implementation and Analysis of Estimation of Distribution Algorithms. Journal of Statistical Software, 2010, 35,	4.2 7.3	31
	Mateda-2.0: AMATLABPackage for the Implementation and Analysis of Estimation of Distribution		
155	Mateda-2.0: AMATLABPackage for the Implementation and Analysis of Estimation of Distribution Algorithms. <i>Journal of Statistical Software</i> , 2010 , 35, Predicting human immunodeficiency virus inhibitors using multi-dimensional Bayesian network	7.3	31
155 154	Mateda-2.0: AMATLABPackage for the Implementation and Analysis of Estimation of Distribution Algorithms. <i>Journal of Statistical Software</i> , 2010 , 35, Predicting human immunodeficiency virus inhibitors using multi-dimensional Bayesian network classifiers. <i>Artificial Intelligence in Medicine</i> , 2013 , 57, 219-29 Predicting citation count of Bioinformatics papers within four years of publication. <i>Bioinformatics</i> ,	7·3 7·4	31
155 154 153	Mateda-2.0: AMATLABPackage for the Implementation and Analysis of Estimation of Distribution Algorithms. <i>Journal of Statistical Software</i> , 2010 , 35, Predicting human immunodeficiency virus inhibitors using multi-dimensional Bayesian network classifiers. <i>Artificial Intelligence in Medicine</i> , 2013 , 57, 219-29 Predicting citation count of Bioinformatics papers within four years of publication. <i>Bioinformatics</i> , 2009 , 25, 3303-9 Markov blanket-based approach for learning multi-dimensional Bayesian network classifiers: an application to predict the European Quality of Life-5 Dimensions (EQ-5D) from the 39-item	7·3 7·4 7·2	31 29 29
155 154 153	Mateda-2.0: AMATLABPackage for the Implementation and Analysis of Estimation of Distribution Algorithms. <i>Journal of Statistical Software</i> , 2010 , 35, Predicting human immunodeficiency virus inhibitors using multi-dimensional Bayesian network classifiers. <i>Artificial Intelligence in Medicine</i> , 2013 , 57, 219-29 Predicting citation count of Bioinformatics papers within four years of publication. <i>Bioinformatics</i> , 2009 , 25, 3303-9 Markov blanket-based approach for learning multi-dimensional Bayesian network classifiers: an application to predict the European Quality of Life-5 Dimensions (EQ-5D) from the 39-item Parkinson's Disease Questionnaire (PDQ-39). <i>Journal of Biomedical Informatics</i> , 2012 , 45, 1175-84 Machine learning approach for the outcome prediction of temporal lobe epilepsy surgery. <i>PLoS</i>	7·3 7·4 7·2	31 29 29 27
155 154 153 152 151	Mateda-2.0: AMATLABPackage for the Implementation and Analysis of Estimation of Distribution Algorithms. <i>Journal of Statistical Software</i> , 2010 , 35, Predicting human immunodeficiency virus inhibitors using multi-dimensional Bayesian network classifiers. <i>Artificial Intelligence in Medicine</i> , 2013 , 57, 219-29 Predicting citation count of Bioinformatics papers within four years of publication. <i>Bioinformatics</i> , 2009 , 25, 3303-9 Markov blanket-based approach for learning multi-dimensional Bayesian network classifiers: an application to predict the European Quality of Life-5 Dimensions (EQ-5D) from the 39-item Parkinson's Disease Questionnaire (PDQ-39). <i>Journal of Biomedical Informatics</i> , 2012 , 45, 1175-84 Machine learning approach for the outcome prediction of temporal lobe epilepsy surgery. <i>PLoS ONE</i> , 2013 , 8, e62819 Clustering of Data Streams With Dynamic Gaussian Mixture Models: An IoT Application in Industrial	7·3 7·4 7·2 10.2	31 29 29 27 27

147	Classification of neocortical interneurons using affinity propagation. <i>Frontiers in Neural Circuits</i> , 2013 , 7, 185	3.5	22
146	Peakbin selection in mass spectrometry data using a consensus approach with estimation of distribution algorithms. <i>IEEE/ACM Transactions on Computational Biology and Bioinformatics</i> , 2011 , 8, 760-74	3	22
145	A graphical decision-theoretic model for neonatal jaundice. <i>Medical Decision Making</i> , 2007 , 27, 250-65	2.5	22
144	A review of representation issues and modeling challenges with influence diagrams. <i>Omega</i> , 2011 , 39, 227-241	7.2	21
143	Data mining validation of fluconazole breakpoints established by the European Committee on Antimicrobial Susceptibility Testing. <i>Antimicrobial Agents and Chemotherapy</i> , 2009 , 53, 2949-54	5.9	21
142	Laminar Differences in Dendritic Structure of Pyramidal Neurons in the Juvenile Rat Somatosensory Cortex. <i>Cerebral Cortex</i> , 2016 , 26, 2811-2822	5.1	19
141	Bayesian network modeling of the consensus between experts: An application to neuron classification. <i>International Journal of Approximate Reasoning</i> , 2014 , 55, 3-22	3.6	18
140	Regularized continuous estimation of distribution algorithms. <i>Applied Soft Computing Journal</i> , 2013 , 13, 2412-2432	7.5	18
139	The Vallecas Project: A Cohort to Identify Early Markers and Mechanisms of Alzheimer's Disease. <i>Frontiers in Aging Neuroscience</i> , 2015 , 7, 181	5.3	17
138	Modeling challenges with influence diagrams: Constructing probability and utility models. <i>Decision Support Systems</i> , 2010 , 49, 354-364	5.6	17
137	Directional naive Bayes classifiers. Pattern Analysis and Applications, 2015, 18, 225-246	2.3	16
136	Cluster methods for assessing research performance: exploring Spanish computer science. <i>Scientometrics</i> , 2013 , 97, 571-600	3	16
135	Models and simulation of 3D neuronal dendritic trees using Bayesian networks. <i>Neuroinformatics</i> , 2011 , 9, 347-69	3.2	16
134	Structural, elicitation and computational issues faced when solving complex decision making problems with influence diagrams. <i>Computers and Operations Research</i> , 2000 , 27, 725-740	4.6	16
133	Evaluation by data mining techniques of fluconazole breakpoints established by the Clinical and Laboratory Standards Institute (CLSI) and comparison with those of the European Committee on Antimicrobial Susceptibility Testing (EUCAST). <i>Antimicrobial Agents and Chemotherapy</i> , 2010 , 54, 1541-6	5.9 5	15
132	Bayesian network classifiers for categorizing cortical GABAergic interneurons. <i>Neuroinformatics</i> , 2015 , 13, 193-208	3.2	14
131	Comparing supervised learning methods for classifying sex, age, context and individual Mudi dogs from barking. <i>Animal Cognition</i> , 2015 , 18, 405-21	3.1	14
130	Classifying evolving data streams with partially labeled data. <i>Intelligent Data Analysis</i> , 2011 , 15, 655-67	01.1	14

(2014-2005)

129	Approximating nondominated sets in continuous multiobjective optimization problems. <i>Naval Research Logistics</i> , 2005 , 52, 469-480	1.5	13
128	Bayesian sparse partial least squares. <i>Neural Computation</i> , 2013 , 25, 3318-39	2.9	12
127	Learning an L1-regularized Gaussian Bayesian network in the equivalence class space. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 2010 , 40, 1231-42		12
126	Tractability of most probable explanations in multidimensional Bayesian network classifiers. <i>International Journal of Approximate Reasoning</i> , 2018 , 93, 74-87	3.6	12
125	Towards a supervised classification of neocortical interneuron morphologies. <i>BMC Bioinformatics</i> , 2018 , 19, 511	3.6	12
124	Classifying GABAergic interneurons with semi-supervised projected model-based clustering. <i>Artificial Intelligence in Medicine</i> , 2015 , 65, 49-59	7.4	11
123	3D morphology-based clustering and simulation of human pyramidal cell dendritic spines. <i>PLoS Computational Biology</i> , 2018 , 14, e1006221	5	11
122	Classification of GABAergic interneurons by leading neuroscientists. <i>Scientific Data</i> , 2019 , 6, 221	8.2	11
121	Comparison of metaheuristic strategies for peakbin selection in proteomic mass spectrometry data. <i>Information Sciences</i> , 2013 , 222, 229-246	7.7	11
120	Classification of neural signals from sparse autoregressive features. <i>Neurocomputing</i> , 2013 , 111, 21-26	5.4	11
119	Branching angles of pyramidal cell dendrites follow common geometrical design principles in different cortical areas. <i>Scientific Reports</i> , 2014 , 4, 5909	4.9	11
118	Multi-dimensional classification of GABAergic interneurons with Bayesian network-modeled label uncertainty. <i>Frontiers in Computational Neuroscience</i> , 2014 , 8, 150	3.5	11
117	Biomedical informatics publications: a global perspective: part I: conferences. <i>Methods of Information in Medicine</i> , 2012 , 51, 82-90	1.5	11
117 116		1.5	11
	Information in Medicine, 2012 , 51, 82-90 Bivariate empirical and n-variate Archimedean copulas in estimation of distribution algorithms	7.2	
116	Bivariate empirical and n-variate Archimedean copulas in estimation of distribution algorithms 2010, Machine-tool condition monitoring with Gaussian mixture models-based dynamic probabilistic		11
116	Information in Medicine, 2012, 51, 82-90 Bivariate empirical and n-variate Archimedean copulas in estimation of distribution algorithms 2010, Machine-tool condition monitoring with Gaussian mixture models-based dynamic probabilistic clustering. Engineering Applications of Artificial Intelligence, 2020, 89, 103434 Mining multi-dimensional concept-drifting data streams using Bayesian network classifiers.	7.2	11

111	Biomedical informatics publications: a global perspective. Part II: Journals. <i>Methods of Information in Medicine</i> , 2012 , 51, 131-7	1.5	10
110	Mining probabilistic models learned by EDAs in the optimization of multi-objective problems 2009,		10
109	Explaining clinical decisions by extracting regularity patterns. <i>Decision Support Systems</i> , 2008 , 44, 397-4	0§ .6	10
108	Logistic regression for simulating damage occurrence on a fruit grading line. <i>Computers and Electronics in Agriculture</i> , 2003 , 39, 95-113	6.5	10
107	bnclassify: Learning Bayesian Network Classifiers. <i>R Journal</i> , 2019 , 10, 455	3.3	10
106	Dynamic Bayesian Network-Based Anomaly Detection for In-Process Visual Inspection of Laser Surface Heat Treatment 2017 , 17-24		9
105	Ensemble transcript interaction networks: a case study on Alzheimer's disease. <i>Computer Methods and Programs in Biomedicine</i> , 2012 , 108, 442-50	6.9	9
104	Optimizing brain networks topologies using multi-objective evolutionary computation. <i>Neuroinformatics</i> , 2011 , 9, 3-19	3.2	9
103	Multi-dimensional Bayesian network classifiers: A survey. <i>Artificial Intelligence Review</i> , 2021 , 54, 519-55	9 9.7	9
102	Random Forests for Regression as a Weighted Sum of \${k}\$ -Potential Nearest Neighbors. <i>IEEE Access</i> , 2019 , 7, 25660-25672	3.5	8
101	Decision functions for chain classifiers based on Bayesian networks for multi-label classification. <i>International Journal of Approximate Reasoning</i> , 2016 , 68, 164-178	3.6	8
100	Learning mixtures of polynomials of multidimensional probability densities from data using B-spline interpolation. <i>International Journal of Approximate Reasoning</i> , 2014 , 55, 989-1010	3.6	8
99	Parameter Control of Genetic Algorithms by Learning and Simulation of Bayesian Networks IA Case Study for the Optimal Ordering of Tables. <i>Journal of Computer Science and Technology</i> , 2013 , 28, 720-731	1.7	8
98	Interval-based ranking in noisy evolutionary multi-objective optimization. <i>Computational Optimization and Applications</i> , 2015 , 61, 517-555	1.4	8
97	Lazy lasso for local regression. <i>Computational Statistics</i> , 2012 , 27, 531-550	1	8
96	Network measures for information extraction in evolutionary algorithms. <i>International Journal of Computational Intelligence Systems</i> , 2013 , 6, 1163-1188	3.4	8
95	Using Bayesian networks to discover relationships between bibliometric indices. A case study of computer science and artificial intelligence journals. <i>Scientometrics</i> , 2011 , 89, 523-551	3	8
94	Estimation of distribution algorithms as logistic regression regularizers of microarray classifiers. <i>Methods of Information in Medicine</i> , 2009 , 48, 236-41	1.5	8

(2021-2005)

93	A list-based compact representation for large decision tables management. <i>European Journal of Operational Research</i> , 2005 , 160, 638-662	5.6	8
92	Data Publications Correlate with Citation Impact. Frontiers in Neuroscience, 2016, 10, 419	5.1	8
91	Genetic algorithms and Gaussian Bayesian networks to uncover the predictive core set of bibliometric indices. <i>Journal of the Association for Information Science and Technology</i> , 2016 , 67, 1703-17	727	7
90	Dendritic-branching angles of pyramidal neurons of the human cerebral cortex. <i>Brain Structure and Function</i> , 2017 , 222, 1847-1859	4	7
89	Regularized logistic regression and multiobjective variable selection for classifying MEG data. <i>Biological Cybernetics</i> , 2012 , 106, 389-405	2.8	7
88	Mouse p53-deficient cancer models as platforms for obtaining genomic predictors of human cancer clinical outcomes. <i>PLoS ONE</i> , 2012 , 7, e42494	3.7	7
87	Optimizing logistic regression coefficients for discrimination and calibration using estimation of distribution algorithms. <i>Top</i> , 2008 , 16, 345-366	1.3	7
86	COMPROMISE-BASED APPROACH TO ROAD PROJECT SELECTION IN MADRID METROPOLITAN AREA. <i>Journal of the Operations Research Society of Japan</i> , 2003 , 46, 99-122	0.3	7
85	A Directional-Linear Bayesian Network and Its Application for Clustering and Simulation of Neural Somas. <i>IEEE Access</i> , 2019 , 7, 69907-69921	3.5	6
84	A univocal definition of the neuronal soma morphology using Gaussian mixture models. <i>Frontiers in Neuroanatomy</i> , 2015 , 9, 137	3.6	6
83	PREDICTING THE EQ-5D FROM THE PARKINSONS DISEASE QUESTIONNAIRE PDQ-8 USING MULTI-DIMENSIONAL BAYESIAN NETWORK CLASSIFIERS. <i>Biomedical Engineering - Applications, Basis and Communications,</i> 2014 , 26, 1450015	0.6	6
82	Mining Concept-Drifting Data Streams Containing Labeled and Unlabeled Instances. <i>Lecture Notes in Computer Science</i> , 2010 , 531-540	0.9	6
81	Learning tractable Bayesian networks in the space of elimination orders. <i>Artificial Intelligence</i> , 2019 , 274, 66-90	3.6	6
80	Multi-dimensional Bayesian Network Classifier Trees. Lecture Notes in Computer Science, 2018, 354-363	0.9	6
79	Recent Advances in Probabilistic Graphical Models. <i>International Journal of Intelligent Systems</i> , 2015 , 30, 207-208	8.4	5
78	Node deletion sequences in influence diagrams using genetic algorithms. <i>Statistics and Computing</i> , 2004 , 14, 181-198	1.8	5
77	Three-dimensional spatial modeling of spines along dendritic networks in human cortical pyramidal neurons. <i>PLoS ONE</i> , 2017 , 12, e0180400	3.7	5
76	Semiparametric Bayesian networks. <i>Information Sciences</i> , 2021 , 584, 564-564	7.7	5

75	Multi-objective Optimization with Joint Probabilistic Modeling of Objectives and Variables. <i>Lecture Notes in Computer Science</i> , 2011 , 298-312	0.9	5
74	Continuous Estimation of Distribution Algorithms Based on Factorized Gaussian Markov Networks. <i>Adaptation, Learning, and Optimization</i> , 2012 , 157-173	0.7	5
73	Observational Study of the Efficiency of Treatments in Patients Hospitalized with Covid-19 in Madrid		5
72	Learning Bayesian networks with low inference complexity. <i>Progress in Artificial Intelligence</i> , 2016 , 5, 15-26	4	5
71	Sensitivity Analysis in IctNeo. <i>Lecture Notes in Statistics</i> , 2000 , 317-334	2.9	5
7º	Circular Bayesian classifiers using wrapped Cauchy distributions. <i>Data and Knowledge Engineering</i> , 2019 , 122, 101-115	1.5	4
69	MultiMap: A Tool to Automatically Extract and Analyse Spatial Microscopic Data From Large Stacks of Confocal Microscopy Images. <i>Frontiers in Neuroanatomy</i> , 2018 , 12, 37	3.6	4
68	Optimal row and column ordering to improve table interpretation using estimation of distribution algorithms. <i>Journal of Heuristics</i> , 2011 , 17, 567-588	1.9	4
67	Multidimensional statistical analysis of the parameterization of a genetic algorithm for the optimal ordering of tables. <i>Expert Systems With Applications</i> , 2010 , 37, 804-815	7.8	4
66	Bayesian Optimization of the PC Algorithm for Learning Gaussian Bayesian Networks. <i>Lecture Notes in Computer Science</i> , 2018 , 44-54	0.9	4
65	Finding and Explaining Optimal Treatments. Lecture Notes in Computer Science, 2003, 299-303	0.9	4
64	Bayesian Networks for Interpretable Machine Learning and Optimization. <i>Neurocomputing</i> , 2021 ,	5.4	4
63	A circular-linear dependence measure under Johnson Wehrly distributions and its application in Bayesian networks. <i>Information Sciences</i> , 2019 , 486, 240-253	7.7	4
62	Long-term forecasting of multivariate time series in industrial furnaces with dynamic Gaussian Bayesian networks. <i>Engineering Applications of Artificial Intelligence</i> , 2021 , 103, 104301	7.2	4
61	Tractable learning of Bayesian networks from partially observed data. <i>Pattern Recognition</i> , 2019 , 91, 190-199	7.7	3
60	A new feature extraction method for signal classification applied to cord dorsum potential detection. <i>Journal of Neural Engineering</i> , 2012 , 9, 056009	5	3
59	Forward stagewise naWe Bayes. <i>Progress in Artificial Intelligence</i> , 2012 , 1, 57-69	4	3
58	Probabilistic Graphical Markov Model Learning: An Adaptive Strategy. <i>Lecture Notes in Computer Science</i> , 2009 , 225-236	0.9	3

(2018-2016)

57	Development of a Cyber-Physical System based on selective Gaussian naMe Bayes model for a self-predict laser surface heat treatment process control 2016 , 1-8		3	
56	Data-Driven Computational Neuroscience: Machine Learning and Statistical Models 2020 ,		3	
55	Comparing basal dendrite branches in human and mouse hippocampal CA1 pyramidal neurons with Bayesian networks. <i>Scientific Reports</i> , 2020 , 10, 18592	4.9	3	
54	Dendritic branching angles of pyramidal cells across layers of the juvenile rat somatosensory cortex. <i>Journal of Comparative Neurology</i> , 2016 , 524, 2567-76	3.4	3	
53	Network design through forests with degree- and role-constrained minimum spanning trees. <i>Journal of Heuristics</i> , 2017 , 23, 31-51	1.9	2	
52	Conditional Density Approximations with Mixtures of Polynomials. <i>International Journal of Intelligent Systems</i> , 2015 , 30, 236-264	8.4	2	
51	Semi-supervised projected model-based clustering. <i>Data Mining and Knowledge Discovery</i> , 2014 , 28, 882	2- 9 .67	2	
50	Frobenius Norm Regularization for the Multivariate Von Mises Distribution. <i>International Journal of Intelligent Systems</i> , 2017 , 32, 153-176	8.4	2	
49	Predicting the h-index with cost-sensitive naive Bayes 2011,		2	
48	Affinity propagation enhanced by estimation of distribution algorithms 2011 ,		2	
47	Learning Conditional Linear Gaussian Classifiers with Probabilistic Class Labels. <i>Lecture Notes in Computer Science</i> , 2013 , 139-148	0.9	2	
46	Multiattribute Utility Analysis in the IctNeo System. <i>Lecture Notes in Economics and Mathematical Systems</i> , 2000 , 81-92	0.4	2	
45	Anllsis de la actividad cientfica de las universidades pfilicas espa li las en el fiea de las tecnologfis informficas. <i>Revista Espanola De Documentacion Cientifica</i> , 2013 , 36, e002	0.7	2	
44	Dendritic and Axonal Wiring Optimization of Cortical GABAergic Interneurons. <i>Neuroinformatics</i> , 2016 , 14, 453-64	3.2	2	
43	A review of Gaussian Markov models for conditional independence. <i>Journal of Statistical Planning and Inference</i> , 2020 , 206, 127-144	0.8	2	
42	BayeSuites: An open web framework for massive Bayesian networks focused on neuroscience. <i>Neurocomputing</i> , 2021 , 428, 166-181	5.4	2	
41	Comparing the Electrophysiology and Morphology of Human and Mouse Layer 2/3 Pyramidal Neurons With Bayesian Networks. <i>Frontiers in Neuroinformatics</i> , 2021 , 15, 580873	3.9	2	

39	Autoregressive Asymmetric Linear Gaussian Hidden Markov Models. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2021 , PP,	13.3	2
38	Identifying Parkinsons disease subtypes with motor and non-motor symptoms via model-based multi-partition clustering. <i>Scientific Reports</i> , 2021 , 11, 23645	4.9	2
37	Hybrid semiparametric Bayesian networks. <i>Test</i> ,	1.1	2
36	Univariate and bivariate truncated von Mises distributions. <i>Progress in Artificial Intelligence</i> , 2017 , 6, 171	4 180	1
35	Sparse regularized local regression. Computational Statistics and Data Analysis, 2013, 62, 122-135	1.6	1
34	Towards optimal neuronal wiring through estimation of distribution algorithms 2013,		1
33	AN L1-REGULARIZED NAWE BAYES-INSPIRED CLASSIFIER FOR DISCARDING REDUNDANT AND IRRELEVANT PREDICTORS. <i>International Journal on Artificial Intelligence Tools</i> , 2013 , 22, 1350019	0.9	1
32	Regularized k-order markov models in EDAs 2011 ,		1
31	A decision approach to competitive electronic sealed-bid auctions for land. <i>Journal of the Operational Research Society</i> , 2006 , 57, 1126-1133	2	1
30	Influence Diagrams for Neonatal Jaundice Management. Lecture Notes in Computer Science, 1999, 138-1	42 9	1
29	Hierarchical Junction Trees: Conditional Independence Preservation and Forecasting in Dynamic Bayesian Networks with Heterogeneous Evolution. <i>Studies in Fuzziness and Soft Computing</i> , 2004 , 57-75	0.7	1
28	Asymmetric Hidden Markov Models with Continuous Variables. <i>Lecture Notes in Computer Science</i> , 2018 , 98-107	0.9	1
27	Regularized Multivariate von Mises Distribution. Lecture Notes in Computer Science, 2015, 25-35	0.9	1
26	Using Probabilistic Dependencies Improves the Search of Conductance-Based Compartmental Neuron Models. <i>Lecture Notes in Computer Science</i> , 2010 , 170-181	0.9	1
25	Synergies between Network-Based Representation and Probabilistic Graphical Models for Classification, Inference and Optimization Problems in Neuroscience. <i>Lecture Notes in Computer Science</i> , 2010 , 149-158	0.9	1
24	The von Mises Naive Bayes Classifier for Angular Data. <i>Lecture Notes in Computer Science</i> , 2011 , 145-154	0.9	1
23	Learning massive interpretable gene regulatory networks of the human brain by merging Bayesian Netv	vorks	1
22	Comparing the electrophysiology and morphology of human and mouse layer 2/3 pyramidal neurons with Bayesian networks		1

21	On generating random Gaussian graphical models. <i>International Journal of Approximate Reasoning</i> , 2020 , 125, 240-250	3.6	1
20	Efficient Anomaly Detection in a Laser-Surface Heat-Treatment Process via Laser-Spot Tracking. <i>IEEE/ASME Transactions on Mechatronics</i> , 2021 , 26, 405-415	5.5	1
19	Patient specific prediction of temporal lobe epilepsy surgical outcomes. <i>Epilepsia</i> , 2021 , 62, 2113-2122	6.4	1
18	Optimal Decision Explanation by Extracting Regularity Patterns 2004 , 283-294		О
17	Incremental Learning of Latent Forests. IEEE Access, 2020, 8, 224420-224432	3.5	О
16	Wiring Economy of Pyramidal Cells in the Juvenile Rat Somatosensory Cortex. PLoS ONE, 2016 , 11, e016	5 59 /15	О
15	Structure Learning of High-Order Dynamic Bayesian Networks via Particle Swarm Optimization with Order Invariant Encoding. <i>Lecture Notes in Computer Science</i> , 2021 , 158-171	0.9	О
14	Guest editors introduction: special issue of the ECMLPKDD 2015 journal track. <i>Data Mining and Knowledge Discovery</i> , 2015 , 29, 1113-1115	5.6	
13	Dealing with complex queries in decision-support systems. <i>Data and Knowledge Engineering</i> , 2011 , 70, 167-181	1.5	
12	On nonlinearity in neural encoding models applied to the primary visual cortex. <i>Network: Computation in Neural Systems</i> , 2011 , 22, 97-125	0.7	
11	Implementation of IctNeo: a Decision Support System for Jaundice Management 2000, 554-559		
10	An Interactive Framework for Open Queries in Decision Support Systems. <i>Lecture Notes in Computer Science</i> , 2002 , 254-264	0.9	
9	A Fast Metropolis-Hastings Method for Generating Random Correlation Matrices. <i>Lecture Notes in Computer Science</i> , 2018 , 117-124	0.9	
8	Towards Gaussian Bayesian Network Fusion. <i>Lecture Notes in Computer Science</i> , 2015 , 519-528	0.9	
7	Tree-Structured Bayesian Networks for Wrapped Cauchy Directional Distributions. <i>Lecture Notes in Computer Science</i> , 2016 , 207-216	0.9	
6	Semi-supervised Projected Clustering for Classifying GABAergic Interneurons. <i>Lecture Notes in Computer Science</i> , 2013 , 156-165	0.9	
5	Learning Mixtures of Polynomials of Conditional Densities from Data. <i>Lecture Notes in Computer Science</i> , 2013 , 363-372	0.9	
4	Augmented Semi-naive Bayes Classifier. <i>Lecture Notes in Computer Science</i> , 2013 , 159-167	0.9	

3	Multi-label Classification. <i>Lecture Notes in Computer Science</i> , 2014 , 519-534	0.9
2	Sparse Cholesky Covariance Parametrization for Recovering Latent Structure in Ordered Data. <i>IEEE Access</i> , 2020 , 8, 154614-154624	3.5
1	An Online Feature Selection Methodology for Ball-Bearing Harmonic Frequencies Based on HMMs. <i>Advances in Intelligent Systems and Computing</i> , 2022 , 546-555	0.4