Jaume Gine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1009507/publications.pdf

Version: 2024-02-01

236833 330025 2,689 219 25 37 citations h-index g-index papers 222 222 222 379 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	On the Integrability of Two-Dimensional Flows. Journal of Differential Equations, 1999, 157, 163-182.	1.1	111
2	Local analytic integrability for nilpotent centers. Ergodic Theory and Dynamical Systems, 2003, 23, .	0.4	83
3	Darboux integrability and the inverse integrating factor. Journal of Differential Equations, 2003, 194, 116-139.	1.1	81
4	The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems. Journal of Differential Equations, 2006, 227, 406-426.	1.1	80
5	Isochronous centers of a linear center perturbed by fourth degree homogeneous polynomial. Bulletin Des Sciences Mathematiques, 1999, 123, 77-96.	0.5	62
6	On some open problems in planar differential systems and Hilbert's 16th problem. Chaos, Solitons and Fractals, 2007, 31, 1118-1134.	2.5	62
7	Isochronous centers of a linear center perturbed by fifth degree homogeneous polynomials. Journal of Computational and Applied Mathematics, 2000, 126, 351-368.	1.1	52
8	Limit cycles of cubic polynomial vector fields via the averaging theory. Nonlinear Analysis: Theory, Methods & Applications, 2007, 66, 1707-1721.	0.6	49
9	Averaging theory at any order for computing periodic orbits. Physica D: Nonlinear Phenomena, 2013, 250, 58-65.	1.3	38
10	Integrability conditions for Lotka–Volterra planar complex quintic systems. Nonlinear Analysis: Real World Applications, 2010, 11, 2100-2105.	0.9	36
11	Isochronicity into a family of time-reversible cubic vector fields. Applied Mathematics and Computation, 2001, 121, 129-145.	1.4	35
12	Conditions for the existence of a center for the Kukles homogeneous systems. Computers and Mathematics With Applications, 2002, 43, 1261-1269.	1.4	35
13	SUFFICIENT CONDITIONS FOR A CENTER AT A COMPLETELY DEGENERATE CRITICAL POINT. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2002, 12, 1659-1666.	0.7	33
14	An improvement to Darboux integrability theorem for systems having a center. Applied Mathematics Letters, 1999, 12, 85-89.	1.5	31
15	The nondegenerate center problem and the inverse integrating factor. Bulletin Des Sciences Mathematiques, 2006, 130, 152-161.	0.5	30
16	A class of reversible cubic systems with an isochronous center. Computers and Mathematics With Applications, 1999, 38, 39-53.	1.4	29
17	Generalized cofactors and nonlinear superposition principles. Applied Mathematics Letters, 2003, 16, 1137-1141.	1.5	29
18	Implementation of a new algorithm of computation of the Poincaré–Liapunov constants. Journal of Computational and Applied Mathematics, 2004, 166, 465-476.	1.1	29

#	Article	IF	Citations
19	The reversibility and the center problem. Nonlinear Analysis: Theory, Methods & Applications, 2011, 74, 695-704.	0.6	29
20	The Center Problem for a Linear Center Perturbed by Homogeneous Polynomials. Acta Mathematica Sinica, English Series, 2006, 22, 1613-1620.	0.2	28
21	Weierstrass integrability of differential equations. Applied Mathematics Letters, 2010, 23, 523-526.	1.5	28
22	Universal centres and composition conditions. Proceedings of the London Mathematical Society, 2013, 106, 481-507.	0.6	28
23	Linearizability conditions for Lotka–Volterra planar complex cubic systems. Journal of Physics A: Mathematical and Theoretical, 2009, 42, 225206.	0.7	26
24	Averaging methods of arbitrary order, periodic solutions and integrability. Journal of Differential Equations, 2016, 260, 4130-4156.	1.1	25
25	On the Poincaré–Lyapunov constants and the Poincare series. Applicationes Mathematicae, 2001, 28, 17-30.	0.1	25
26	On the dynamics of the Rayleigh–Duffing oscillator. Nonlinear Analysis: Real World Applications, 2019, 45, 309-319.	0.9	24
27	A necessary condition in the monodromy problem for analytic differential equations on the plane. Journal of Symbolic Computation, 2006, 41, 943-958.	0.5	23
28	Weierstrass integrability in Li \tilde{A} @nard differential systems. Journal of Mathematical Analysis and Applications, 2011, 377, 362-369.	0.5	23
29	Hawking effect and Unruh effect from the uncertainty principle. Europhysics Letters, 2018, 121, 10001.	0.7	23
30	ON THE DEGENERATE CENTER PROBLEM. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2011, 21, 1383-1392.	0.7	22
31	The 1: ⰰq resonant center problem for certain cubic Lotka–Volterra systems. Applied Mathematics and Computation, 2012, 218, 11620-11633.	1.4	22
32	A second order analysis of the periodic solutions for nonlinear periodic differential systems with a small parameter. Physica D: Nonlinear Phenomena, 2012, 241, 528-533.	1.3	22
33	Integrability of Centers Perturbed by Quasi-Homogeneous Polynomials. Journal of Mathematical Analysis and Applications, 1997, 210, 268-278.	0.5	21
34	ON INTEGRABILITY OF DIFFERENTIAL EQUATIONS DEFINED BY THE SUM OF HOMOGENEOUS VECTOR FIELDS WITH DEGENERATE INFINITY. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2001, 11, 711-722.	0.7	21
35	Characterization of isochronous foci for planar analytic differential systems. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2005, 135, 985-998.	0.8	21
36	ON THE CENTERS OF PLANAR ANALYTIC DIFFERENTIAL SYSTEMS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2007, 17, 3061-3070.	0.7	21

#	Article	IF	CITATIONS
37	Integrability Conditions for Lotka-Volterra Planar Complex Quartic Systems Having Homogeneous Nonlinearities. Acta Applicandae Mathematicae, 2013, 124, 107-122.	0.5	21
38	Analytic nilpotent centers as limits of nondegenerate centers revisited. Journal of Mathematical Analysis and Applications, 2016, 441, 893-899.	0.5	21
39	Center Conditions for Polynomial Liénard Systems. Qualitative Theory of Dynamical Systems, 2017, 16, 119-126.	0.8	20
40	Linearizability conditions for Lotka–Volterra planar complex quartic systems having homogeneous nonlinearities. Computers and Mathematics With Applications, 2011, 61, 1190-1201.	1.4	19
41	Existence of inverse integrating factors and Lie symmetries for degenerate planar centers. Journal of Differential Equations, 2012, 252, 344-357.	1.1	18
42	Analytic integrability for some degenerate planar vector fields. Journal of Differential Equations, 2014, 257, 549-565.	1.1	18
43	Liouvillian integrability of a general Rayleigh-Duffing oscillator. Journal of Nonlinear Mathematical Physics, 2019, 26, 169.	0.8	18
44	A family of isochronous foci with Darboux first integral. Pacific Journal of Mathematics, 2005, 218, 343-355.	0.2	18
45	Linearizability and integrability of vector fields via commutation. Journal of Mathematical Analysis and Applications, 2006, 319, 326-332.	0.5	17
46	Abel differential equations admitting a certain first integral. Journal of Mathematical Analysis and Applications, 2010, 370, 187-199.	0.5	17
47	Higher order limit cycle bifurcations from non-degenerate centers. Applied Mathematics and Computation, 2012, 218, 8853-8860.	1.4	17
48	A method for characterizing nilpotent centers. Journal of Mathematical Analysis and Applications, 2014, 413, 537-545.	0.5	17
49	Centers for the Kukles homogeneous systems with odd degree. Bulletin of the London Mathematical Society, 2015, 47, 315-324.	0.4	17
50	Modified inertia from extended uncertainty principle(s) and its relation to MoND. European Physical Journal C, 2020, 80, 1 .	1.4	17
51	Non-algebraic invariant curves for polynomial planar vector fields. Discrete and Continuous Dynamical Systems, 2004, 10, 755-768.	0.5	17
52	On Lie's symmetries for planar polynomial differential systems. Nonlinearity, 2001, 14, 863-880.	0.6	16
53	Isochronous Foci for Analytic Differential Systems. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2003, 13, 1617-1623.	0.7	16
54	Integrability and algebraic limit cycles for polynomial differential systems with homogeneous nonlinearities. Journal of Differential Equations, 2004, 197, 147-161.	1.1	16

#	Article	IF	CITATIONS
55	Integrability of Planar Polynomial Differential Systems through Linear Differential Equations. Rocky Mountain Journal of Mathematics, 2006, 36, 457.	0.2	16
56	Coexistence of algebraic and non-algebraic limit cycles, explicitly given, using Riccati equations. Nonlinearity, 2006, 19, 1939-1950.	0.6	16
57	On the integrable rational Abel differential equations. Zeitschrift Fur Angewandte Mathematik Und Physik, 2010, 61, 33-39.	0.7	16
58	On the polynomial limit cycles of polynomial differential equations. Israel Journal of Mathematics, 2011, 181, 461-475.	0.4	16
59	Lower bounds for the local cyclicity for families of centers. Journal of Differential Equations, 2021, 275, 309-331.	1.1	16
60	Analytic integrability and characterization of centers for generalized nilpotent singular points. Applied Mathematics and Computation, 2004, 148, 849-868.	1.4	15
61	On the cyclicity of weight-homogeneous centers. Journal of Differential Equations, 2009, 246, 3126-3135.	1.1	15
62	Essential variables in the integrability problem of planar vector fields. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 291-297.	0.9	15
63	The center problem for <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi mathvariant="double-struck">Z</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow><td>nl:Mຮົub><</td><td>/mml:math>-</td></mml:msub></mml:math>	nl:Mຮົub><	/mml:math>-
64	On the number of algebraically independent Poincar $\tilde{\mathbb{Q}}$ $\hat{\mathbb{Q}}$ $\hat{\mathbb{Q}}$ $\hat{\mathbb{Q}}$ $\hat{\mathbb{Q}}$ Computation, 2007, 188, 1870-1877.	1.4	14
65	Cyclicity versus Center Problem. Qualitative Theory of Dynamical Systems, 2010, 9, 101-113.	0.8	14
66	Polynomial and rational first integrals for planar quasi-homogeneous polynomial differential systems. Discrete and Continuous Dynamical Systems, 2013, 33, 4531-4547.	0.5	14
67	Casimir effect and the uncertainty principle. Modern Physics Letters A, 2018, 33, 1850140.	0.5	14
68	On the origin of the gravitational quantization: The Titius–Bode law. Chaos, Solitons and Fractals, 2007, 32, 363-369.	2.5	13
69	Inertial mass from Unruh temperatures. Modern Physics Letters A, 2016, 31, 1650107.	0.5	13
70	Integrability of complex planar systems with homogeneous nonlinearities. Journal of Mathematical Analysis and Applications, 2016, 434, 894-914.	0.5	13
71	Liénard Equation and Its Generalizations. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2017, 27, 1750081.	0.7	13
72	Analytic integrability around a nilpotent singularity. Journal of Differential Equations, 2019, 267, 443-467.	1.1	13

#	Article	IF	CITATIONS
73	On the origin of the anomalous precession of Mercury's perihelion. Chaos, Solitons and Fractals, 2008, 38, 1004-1010.	2.5	12
74	The center problem via averaging method. Journal of Mathematical Analysis and Applications, 2009, 351, 334-339.	0.5	12
75	Bifurcation of Limit Cycles from a Polynomial Degenerate Center. Advanced Nonlinear Studies, 2010, 10, 597-609.	0.7	12
76	On the planar integrable differential systems. Zeitschrift Fur Angewandte Mathematik Und Physik, 2011, 62, 567-574.	0.7	12
77	Reduction of integrable planar polynomial differential systems. Applied Mathematics Letters, 2012, 25, 1862-1865.	1.5	12
78	On the extensions of the Darboux theory of integrability. Nonlinearity, 2013, 26, 2221-2229.	0.6	12
79	Nilpotent centres via inverse integrating factors. European Journal of Applied Mathematics, 2016, 27, 781-795.	1.4	12
80	On the classical descriptions of the quantum phenomena in the harmonic oscillator and in a charged particle under the coulomb force. Chaos, Solitons and Fractals, 2005, 26, 1259-1266.	2.5	11
81	On the origin of quantum mechanics. Chaos, Solitons and Fractals, 2006, 30, 532-541.	2.5	11
82	On the origin of the inertia: The modified Newtonian dynamics theory. Chaos, Solitons and Fractals, 2009, 41, 1651-1660.	2.5	11
83	Quantum fluctuations and the slow accelerating expansion of the Universe. Europhysics Letters, 2019, 125, 50002.	0.7	11
84	Integrability, degenerate centers, and limit cycles for a class of polynomial differential systems. Computers and Mathematics With Applications, 2006, 51, 1453-1462.	1.4	10
85	On the origin of the deflection of light. Chaos, Solitons and Fractals, 2008, 35, 1-6.	2.5	10
86	On the Origin of the Inertial Force and Gravitation. International Journal of Theoretical Physics, 2011, 50, 607-617.	0.5	10
87	THE HOLOGRAPHIC SCENARIO, THE MODIFIED INERTIA AND THE DYNAMICS OF THE UNIVERSE. Modern Physics Letters A, 2012, 27, 1250208.	0.5	10
88	Limit cycle bifurcations from a non-degenerate center. Applied Mathematics and Computation, 2012, 218, 4703-4709.	1.4	10
89	xmins:xocs="http://www.eisevier.com/xmi/xocs/dtd" xmins:xs="http://www.w3.org/2001/XiviLSchema" xmlns:xsi="http://www.w3.org/2001/XiviLSchema xmlns:xsi="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.w3.org/1998/Math/Math/MathML" xmlns:tb="http://www.w	1.4	10
90	xmins:sb="http://www.eisevier.com/xmi/common/struct-oib/ota" xmlns:ce="http://www.eisevier.com/x Integrability of magnetic fields created by current distributions. Nonlinearity, 2008, 21, 51-69.	0.6	9

#	Article	IF	Citations
91	Minimum number of ideal generators for a linear center perturbed by homogeneous polynomials. Nonlinear Analysis: Theory, Methods & Applications, 2009, 71, e132-e137.	0.6	9
92	ON THE CENTER CONDITIONS FOR ANALYTIC MONODROMIC DEGENERATE SINGULARITIES. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012, 22, 1250303.	0.7	9
93	The center problem for a <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>1</mml:mn><mml:mo></mml:mo><mml:mo><mml:mo></mml:mo><mml:mn> ouadratic system. lournal of Mathematical Analysis and Applications. 2014. 420. 1568-1591.</mml:mn></mml:mo></mml:math>	o.5 /mml:mat	n Sh>resonan
94	Geometric Criterium in the Center Problem. Mediterranean Journal of Mathematics, 2016, 13, 2593-2611.	0.4	9
95	Integrability conditions of a resonant saddle in Liénard-like complex systems. Chaos, Solitons and Fractals, 2016, 82, 139-141.	2.5	9
96	A sufficient condition in order that the real Jacobian conjecture in <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mn>2</mml:mn><td>1.1 :msup><td>9 nml:math></td></td></mml:mrow></mml:mrow></mml:msup></mml:math>	1.1 :msup> <td>9 nml:math></td>	9 nml:math>
97	Integrability of Liénard systems with a weak saddle. Zeitschrift Fur Angewandte Mathematik Und Physik, 2017, 68, 1.	0.7	9
98	Blow-up method to compute necessary conditions of integrability for planar differential systems. Applied Mathematics and Computation, 2019, 358, 16-24.	1.4	9
99	Strongly formal Weierstrass non-integrability for polynomial differential systems in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck"> C</mml:mi> </mml:mrow> <mml:mn> </mml:mn></mml:msup> </mml:math> . Electronic Journal of Qualitative Theory of	0.2	9
100	Analytic integrability for some degenerate planar systems. Communications on Pure and Applied Analysis, 2013, 12, 2797-2809.	0.4	9
101	Liénard and Riccati differential equations related via Lie Algebras. Discrete and Continuous Dynamical Systems - Series B, 2008, 10, 485-494.	0.5	9
102	Analytic integrability and characterization of centers for nilpotent singular points. Zeitschrift Fur Angewandte Mathematik Und Physik, 2004, 55, 725-740.	0.7	8
103	The role of algebraic solutions in planar polynomial differential systems. Mathematical Proceedings of the Cambridge Philosophical Society, 2007, 143, 487-508.	0.3	8
104	Analytic nilpotent centers with analytic first integral. Nonlinear Analysis: Theory, Methods & Applications, 2010, 72, 3732-3738.	0.6	8
105	A note on Liouvillian integrability. Journal of Mathematical Analysis and Applications, 2012, 387, 1044-1049.	0.5	8
106	Center problem in the center manifold for quadratic differential systems in <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi><mml:mrow><mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow><td>0.5 :msup><td>8 nml:math>.</td></td></mml:mrow></mml:mrow></mml:mrow></mml:msup></mml:math>	0.5 :msup> <td>8 nml:math>.</td>	8 nml:math>.
107	Journal of Symbolic Computation, 2016, 73, 250-267. The center problem and composition condition for Abel differential equations., 2016, 34, 210-222.		8
108	Inertial mass of an elementary particle from the holographic scenario. International Journal of Modern Physics A, 2017, 32, 1750043.	0.5	8

#	Article	IF	Citations
109	Nondegenerate and Nilpotent Centers for a Cubic System of Differential Equations. Qualitative Theory of Dynamical Systems, 2019, 18, 333-345.	0.8	8
110	Nonlinear oscillations in the modified Leslie–Gower model. Nonlinear Analysis: Real World Applications, 2020, 51, 103010.	0.9	8
111	Center conditions for generalized polynomial Kukles systems. Communications on Pure and Applied Analysis, 2017, 16, 417-425.	0.4	8
112	Integrability conditions of a resonant saddle perturbed with homogeneous quintic nonlinearities. Nonlinear Dynamics, 2015, 81, 2021-2030.	2.7	7
113	Analytic integrability inside a family of degenerate centers. Nonlinear Analysis: Real World Applications, 2016, 31, 288-307.	0.9	7
114	Integrability of Lotka–Volterra Planar Complex Cubic Systems. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1650002.	0.7	7
115	On the integrability of Liénard systems with a strong saddle. Applied Mathematics Letters, 2017, 70, 39-45.	1.5	7
116	Formal Weierstrass Nonintegrability Criterion for Some Classes of Polynomial Differential Systems in â,,,2. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2050064.	0.7	7
117	Universal centers in the cubic trigonometric Abel equation. Electronic Journal of Qualitative Theory of Differential Equations, 2014, , 1-7.	0.2	7
118	Center problem with characteristic directions and inverse integrating factors. Communications in Nonlinear Science and Numerical Simulation, 2022, 108, 106276.	1.7	7
119	Puiseux Integrability of Differential Equations. Qualitative Theory of Dynamical Systems, 2022, 21, 1.	0.8	7
120	Polynomial first integrals via the Poincar \tilde{A} © series. Journal of Computational and Applied Mathematics, 2005, 184, 428-441.	1.1	6
121	A note on: "Relaxation oscillators with exact limit cyclesâ€. Journal of Mathematical Analysis and Applications, 2006, 324, 739-745.	0.5	6
122	An algorithmic method to determine integrability for polynomial planar vector fields. European Journal of Applied Mathematics, 2006, 17, 161.	1.4	6
123	Towards a quantum universe. Astrophysics and Space Science, 2012, 339, 25-30.	0.5	6
124	On the first integrals in the center problem. Bulletin Des Sciences Mathematiques, 2013, 137, 457-465.	0.5	6
125	A note on Liouvillian first integrals and invariant algebraic curves. Applied Mathematics Letters, 2013, 26, 285-289.	1.5	6
126	On the Formal Integrability Problem for Planar Differential Systems. Abstract and Applied Analysis, 2013, 2013, 1-10.	0.3	6

#	Article	IF	CITATIONS
127	The solution of the 1:â^3 resonant center problem in the quadratic case. Applied Mathematics and Computation, 2014, 237, 501-511.	1.4	6
128	Limit cycles bifurcating from planar polynomial quasi-homogeneous centers. Journal of Differential Equations, 2015, 259, 7135-7160.	1.1	6
129	Integrability conditions of a resonant saddle in generalized Liénard-like complex polynomial differential systems. Chaos, Solitons and Fractals, 2017, 96, 130-131.	2.5	6
130	Nondegenerate centers and limit cycles of cubic Kolmogorov systems. Nonlinear Dynamics, 2018, 91, 487-496.	2.7	6
131	Simultaneity of centres in â,,ফ্ -equivariant systems. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474, 20170811.	1.0	6
132	A counterexample to the composition condition conjecture for polynomial Abel differential equations. Ergodic Theory and Dynamical Systems, 2019, 39, 3347-3352.	0.4	6
133	Corpuscular interaction gravity from uncertainty principle. Europhysics Letters, 2020, 130, 60002.	0.7	6
134	Formal Weierstrass integrability for a Liénard differential system. Journal of Mathematical Analysis and Applications, 2021, 499, 125016.	0.5	6
135	Orbital Reversibility of Planar Vector Fields. Mathematics, 2021, 9, 14.	1.1	6
136	Integrable systems via polynomial inverse integrating factors. Bulletin Des Sciences Mathematiques, 2002, 126, 315-331.	0.5	5
137	The Pioneer anomaly and the holographic scenario. Astrophysics and Space Science, 2012, 337, 483-486.	0.5	5
138	Nondegenerate centers for Abel polynomial differential equations of second kind. Journal of Computational and Applied Mathematics, 2017, 321, 469-477.	1.1	5
139	The Liouvillian Integrability of Several Oscillators. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2019, 29, 1950069.	0.7	5
140	Quantum fluctuations and the double-slit experiment. Modern Physics Letters A, 2019, 34, 1950139.	0.5	5
141	Integrability of planar nilpotent differential systems through the existence of an inverse integrating factor. Communications in Nonlinear Science and Numerical Simulation, 2019, 71, 130-140.	1.7	5
142	Quantum fluctuations and the Casimir effect. International Journal of Modern Physics D, 2020, 29, 2050059.	0.9	5
143	Darboux Integrability and Limit Cycles for a Class of Polynomial Differential Systems., 2005,, 55-65.		5
144	Periodic solutions for nonlinear differential systems: the second order bifurcation function. Topological Methods in Nonlinear Analysis, 2014, 43, 403.	0.2	5

#	Article	IF	Citations
145	Essential perturbations of polynomial vector fields with a period annulus. Communications on Pure and Applied Analysis, 2015, 14, 1073-1095.	0.4	5
146	Center problem for systems with two monomial nonlinearities. Communications on Pure and Applied Analysis, 2016, 15, 577-598.	0.4	5
147	Analytic integrability around a nilpotent singularity: The non-generic case. Communications on Pure and Applied Analysis, 2020, 19, 407-423.	0.4	5
148	Multiplicity of limit cycles and analytic m-solutions for planar differential systems. Journal of Differential Equations, 2007, 240, 375-398.	1.1	4
149	Linearizable planar differential systems via the inverse integrating factor. Journal of Physics A: Mathematical and Theoretical, 2008, 41, 135205.	0.7	4
150	THE NONDEGENERATE CENTER PROBLEM IN CERTAIN FAMILIES OF PLANAR DIFFERENTIAL SYSTEMS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2009, 19, 435-443.	0.7	4
151	Centers and isochronous centers for generalized quintic systems. Journal of Computational and Applied Mathematics, 2015, 279, 173-186.	1.1	4
152	Center problem for trigonometric Liénard systems. Journal of Differential Equations, 2017, 263, 3928-3942.	1.1	4
153	The generalized polynomial Moon–Rand system. Nonlinear Analysis: Real World Applications, 2018, 39, 411-417.	0.9	4
154	Modeling inertia through the interaction with quantum fluctuations. Results in Physics, 2021, 28, 104543.	2.0	4
155	Analytic reducibility of nondegenerate centers: Cherkas systems. Electronic Journal of Qualitative Theory of Differential Equations, 2016, , 1-10.	0.2	4
156	On the Mechanisms for Producing Linear Type Centers in Polynomial Differential Systems. Moscow Mathematical Journal, 2018, 18, 409-420.	0.2	4
157	Modified Hawking effect from generalized uncertainty principle. Communications in Theoretical Physics, 2021, 73, 015201.	1.1	4
158	Gravitational effects on the Heisenberg Uncertainty Principle: A geometric approach. Results in Physics, 2022, 38, 105594.	2.0	4
159	ANALYTIC INTEGRABILITY OF NILPOTENT CUBIC SYSTEMS WITH DEGENERATE INFINITY. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2001, 11, 2299-2304.	0.7	3
160	Analytic integrability of a class of nilpotent cubic systems. Mathematics and Computers in Simulation, 2002, 59, 489-495.	2.4	3
161	Is gravitational quantization another consequence of General Relativity?. Chaos, Solitons and Fractals, 2009, 42, 1893-1899.	2.5	3
162	The phenomenological version of modified Newtonian dynamics from the relativity principle of motion. Physica Scripta, 2012, 85, 025011.	1.2	3

#	Article	IF	Citations
163	Centers for a class of generalized quintic polynomial differential systems. Applied Mathematics and Computation, 2014, 242, 187-195.	1.4	3
164	Singularity analysis in planar vector fields. Journal of Mathematical Physics, 2014, 55, 112703.	0.5	3
165	Dulac Functions of Planar Vector Fields. Qualitative Theory of Dynamical Systems, 2014, 13, 121-128.	0.8	3
166	Center conditions for nilpotent cubic systems using the Cherkas method. Mathematics and Computers in Simulation, $2016,129,1-9.$	2.4	3
167	Reversible nilpotent centers with cubic homogeneous nonlinearities. Journal of Mathematical Analysis and Applications, 2016, 433, 305-319.	0.5	3
168	Center conditions of a particular polynomial differential system with a nilpotent singularity. Journal of Mathematical Analysis and Applications, 2020, 483, 123639.	0.5	3
169	Highest weak focus order for trigonometric Liénard equations. Annali Di Matematica Pura Ed Applicata, 2020, 199, 1673-1684.	0.5	3
170	Present value of the Universe's acceleration. Europhysics Letters, 2020, 129, 19001.	0.7	3
171	A note on: "The generalized Liénard polynomial differential systems x′ = y, y′ = ⰳg(x)â°³f(x)deg g a6€¯deg f + 1, are not Liouvillian integrable―[Bull. Sci. math. 139 (2015) 214–227]. Bullet Mathematiques, 2020, 161, 102857.	y, with in @ē s Scie	en & es
172	A new sufficient condition in order that the real Jacobian conjecture in <mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow><td>nl:11 nl:msup><</td><td>/m³ml:math></td></mml:msup></mml:math>	nl:11 nl:msup><	/m³ml:math>
173	Analytic integrability of certain resonant saddle. Chaos, Solitons and Fractals, 2021, 146, 110821.	2.5	3
174	The Resonant Center Problem for a 2:-3 Resonant Cubic Lotka–Volterra System. Lecture Notes in Computer Science, 2012, , 129-142.	1.0	3
175	Polynomial first integrals of systems in the plane with center type linear part. Nonlinear Analysis: Theory, Methods & Applications, 1998, 31, 521-535.	0.6	2
176	Lie symmetries for the orbital linearization of smooth planar vector fields around singular points. Journal of Mathematical Analysis and Applications, 2008, 345, 63-69.	0.5	2
177	Orbital Linearization in the Quadratic Lotka–Volterra Systems Around Singular Points Via Lie Symmetries. Journal of Nonlinear Mathematical Physics, 2009, 16, 455.	0.8	2
178	Periodic solutions of second-order differential equations with two-dimensional Lie point symmetry algebra. Nonlinear Analysis: Real World Applications, 2010, 11, 4128-4140.	0.9	2
179	Einstein versus Lorentz and Poincaré: Open questions of credit Physics Essays, 2010, 23, 92-96.	0.1	2
180	On Liouvillian integrability of the first–order polynomial ordinary differential equations. Journal of Mathematical Analysis and Applications, 2012, 395, 802-805.	0.5	2

#	Article	IF	CITATIONS
181	On the determination of the limit cycles using the harmonic balance method. Journal of Mathematical Physics, 2013, 54, 103510.	0.5	2
182	Centers of weight-homogeneous polynomial vector fields on the plane. Proceedings of the American Mathematical Society, 2016, 145, 2539-2555.	0.4	2
183	Analytic Integrability of Some Examples of Degenerate Planar Vector Fields. Acta Applicandae Mathematicae, 2016, 141, 1-15.	0.5	2
184	Analytic integrability of cubic–linear planar polynomial differential systems. Journal of Differential Equations, 2016, 260, 1690-1716.	1.1	2
185	Integrability conditions for complex kukles systems. Dynamical Systems, 2017, 32, 211-220.	0.2	2
186	Modified inertial mass from information loss. Modern Physics Letters A, 2017, 32, 1750148.	0.5	2
187	The Cubic Polynomial Differential Systems with two Circles as Algebraic Limit Cycles. Advanced Nonlinear Studies, 2018, 18, 183-193.	0.7	2
188	Integrability conditions of a weak saddle in generalized Liénard-like complex polynomial differential systems. Journal of Nonlinear Mathematical Physics, 2020, 27, 664-678.	0.8	2
189	Small-Amplitude Limit Cycles of Certain Planar Differential Systems. Qualitative Theory of Dynamical Systems, 2020, 19, 1.	0.8	2
190	Quantum Fluctuations and the N-Slit Interference. International Journal of Theoretical Physics, 2021, 60, 1-9.	0.5	2
191	Vanishing set of inverse Jacobi multipliers and attractor/repeller sets. Chaos, 2021, 31, 013113.	1.0	2
192	Dirac equation from the extended uncertainty principle. Physica Scripta, 2021, 96, 065311.	1.2	2
193	GENERALIZED NONLINEAR SUPERPOSITION PRINCIPLES. , 2005, , .		2
194	Deriving quantised inertia using horizon-widths in the uncertainty principle. Advanced Studies in Theoretical Physics, 2020, 14, 1-8.	0.1	2
195	Linearization of smooth planar vector fields around singular points via commuting flows. Communications on Pure and Applied Analysis, 2008, 7, 1415-1428.	0.4	2
196	Invariant Algebraic Curves of Generalized Liénard Polynomial Differential Systems. Mathematics, 2022, 10, 209.	1.1	2
197	A note on the Liouvillian integrability and the qualitative properties of the mass rate equation for black holes. Journal of Mathematical Physics, 2012, 53, .	0.5	1
198	On the Multiplicity of Algebraic Limit Cycles. Journal of Dynamics and Differential Equations, 2012, 24, 539-560.	1.0	1

#	Article	IF	CITATIONS
199	Cosmological Consequences of the Holographic Scenario. International Journal of Theoretical Physics, 2013, 52, 53-61.	0.5	1
200	Preface: To the Memory of Javier Chavarriga. Qualitative Theory of Dynamical Systems, 2016, 15, 1-2.	0.8	1
201	Centers for generalized quintic polynomial differential systems. Rocky Mountain Journal of Mathematics, 2017, 47, .	0.2	1
202	Integrability Conditions for Complex Homogeneous Kukles Systems. Journal of Nonlinear Mathematical Physics, 2018, 25, 387.	0.8	1
203	On the critical points of the flight return time function of perturbed closed orbits. Journal of Differential Equations, 2019, 266, 8344-8369.	1.1	1
204	Orbitally universal centers. Nonlinear Analysis: Theory, Methods & Applications, 2020, 195, 111746.	0.6	1
205	Simultaneity of centres in double-reversible planar differential systems. Dynamical Systems, 2021, 36, 167-180.	0.2	1
206	Generalized Dirac Equation for a particle in a gravitational field. General Relativity and Gravitation, 2021, 53, 1.	0.7	1
207	A New Normal Form for Monodromic Nilpotent Singularities of Planar Vector Fields. Mediterranean Journal of Mathematics, 2021, 18, 1.	0.4	1
208	Linearizability of planar polynomial Hamiltonian systems. Nonlinear Analysis: Real World Applications, 2022, 63, 103422.	0.9	1
209	The EPR paradox and the uncertainty principle. Modern Physics Letters B, 2021, 35, 2150072.	1.0	1
210	Center problem for generic degenerate vector fields. Nonlinear Analysis: Theory, Methods & Applications, 2022, 214, 112597.	0.6	1
211	ANALYTIC INTEGRABILITY AROUND THE ORIGIN OF CERTAIN DIFFERENTIAL SYSTEM. Journal of Applied Analysis and Computation, 2022, 12, 1-16.	0.2	1
212	On the Dynamics of Higgins–Selkov, Selkov and Brusellator Oscillators. Symmetry, 2022, 14, 438.	1.1	1
213	Generalized nonlinear superposition principles for planar polynomial vector fields. Nonlinear Analysis: Theory, Methods & Applications, 2005, 63, e679-e684.	0.6	0
214	To the Memory of Javier Chavarriga. Qualitative Theory of Dynamical Systems, 2010, 9, 5-8.	0.8	0
215	The stable limit cycles: A synchronization phenomenon. Journal of the Franklin Institute, 2013, 350, 1649-1657.	1.9	0
216	Global Câ^ž integrability of quartic–linear polynomial differential systems. Dynamical Systems, 2019, 34, 1-13.	0.2	0

#	Article	IF	CITATIONS
217	Integrability Conditions of a Weak Saddle in a Complex Polynomial Differential System. Journal of Dynamical and Control Systems, 2020, , 1.	0.4	O
218	What justifies the existence of a cosmological horizon?. Astrophysics and Space Science, 2020, 365, 1.	0.5	0
219	Is it possible to implement a holographic equivalence principle?. Europhysics Letters, 2022, 137, 19002.	0.7	0