Kevin Huffenberger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1009402/publications.pdf

Version: 2024-02-01

206 papers 41,476 citations

92 h-index 202 g-index

206 all docs

206 docs citations

206 times ranked 19454 citing authors

#	Article	IF	CITATIONS
1	Galactic Foreground Constraints on Primordial B-mode Detection for Ground-based Experiments. Astrophysical Journal, 2022, 924, 11.	1.6	2
2	CMB-S4: Forecasting Constraints on Primordial Gravitational Waves. Astrophysical Journal, 2022, 926, 54.	1.6	79
3	Full-sky, Arcminute-scale, 3D Models of Galactic Microwave Foreground Dust Emission Based on Filaments. Astrophysical Journal, 2022, 928, 65.	1.6	10
4	The Simons Observatory: Galactic Science Goals and Forecasts. Astrophysical Journal, 2022, 929, 166.	1.6	10
5	The Atacama Cosmology Telescope: SZ-based masses and dust emission from IR-selected cluster candidates in the SHELA survey. Monthly Notices of the Royal Astronomical Society, 2021, 502, 4026-4038.	1.6	3
6	The Atacama Cosmology Telescope: A Catalog of >4000 Sunyaev–Zel'dovich Galaxy Clusters. Astrophysical Journal, Supplement Series, 2021, 253, 3.	3.0	118
7	Atacama Cosmology Telescope: Modeling the gas thermodynamics in BOSS CMASS galaxies from kinematic and thermal Sunyaev-Zel'dovich measurements. Physical Review D, 2021, 103, .	1.6	60
8	Atacama Cosmology Telescope: Combined kinematic and thermal Sunyaev-Zel'dovich measurements from BOSS CMASS and LOWZ halos. Physical Review D, 2021, 103, .	1.6	76
9	MERGHERS pilot: MeerKAT discovery of diffuse emission in nine massive Sunyaev–Zel'dovich-selected galaxy clusters from ACT. Monthly Notices of the Royal Astronomical Society, 2021, 504, 1749-1758.	1.6	9
10	The Atacama Cosmology Telescope: Detection of Millimeter-wave Transient Sources. Astrophysical Journal, 2021, 915, 14.	1.6	15
11	The Atacama Cosmology Telescope: Summary of DR4 and DR5 Data Products and Data Access. Astrophysical Journal, Supplement Series, 2021, 255, 11.	3.0	19
12	Observations of compact sources in galaxy clusters using MUSTANG2. Monthly Notices of the Royal Astronomical Society, 2021, 508, 2600-2612.	1.6	3
13	Atacama Cosmology Telescope measurements of a large sample of candidates from the Massive and Distant Clusters of WISE Survey. Astronomy and Astrophysics, 2021, 653, A135.	2.1	8
14	Cooling Improves Cosmic Microwave Background Map-making when Low-frequency Noise is Large. Astrophysical Journal, 2021, 922, 97.	1.6	1
15	The Atacama Cosmology Telescope: A Search for Planet 9. Astrophysical Journal, 2021, 923, 224.	1.6	10
16	Atacama Cosmology Telescope: Component-separated maps of CMB temperature and the thermal Sunyaev-Zel'dovich effect. Physical Review D, 2020, 102, .	1.6	56
17	Atacama Cosmology Telescope: Dusty Star-forming Galaxies and Active Galactic Nuclei in the Equatorial Survey. Astrophysical Journal, 2020, 893, 104.	1.6	16
18	The Atacama Cosmology Telescope: a measurement of the Cosmic Microwave Background power spectra at 98 and 150 GHz. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 045-045.	1.9	148

#	Article	IF	CITATIONS
19	The Atacama Cosmology Telescope: arcminute-resolution maps of 18 000 square degrees of the microwave sky from ACT 2008–2018 data combined with Planck. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 046-046.	1.9	50
20	The Atacama Cosmology Telescope: DR4 maps and cosmological parameters. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 047-047.	1.9	343
21	Atacama Cosmology Telescope: Constraints on cosmic birefringence. Physical Review D, 2020, 101, .	1.6	50
22	The Power Spectra of Polarized, Dusty Filaments. Astrophysical Journal, 2020, 899, 31.	1.6	22
23	Cross-correlation between Subaru Hyper Suprime-Cam Galaxy Weak Lensing and Planck Cosmic Microwave Background Lensing. Astrophysical Journal, 2020, 904, 182.	1.6	18
24	The Atacama Cosmology Telescope: Weighing Distant Clusters with the Most Ancient Light. Astrophysical Journal Letters, 2020, 903, L13.	3.0	15
25	Real-space computation of <i>E</i> / <i>B</i> -mode maps. Part I. Formalism, compact kernels, and polarized filaments. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 045-045.	1.9	10
26	The Atacama Cosmology Telescope: CO(J = 3 – 2) Mapping and Lens Modeling of an ACT-selected Dusty Star-forming Galaxy. Astrophysical Journal, 2019, 879, 95.	1.6	9
27	Quantifying the thermal Sunyaev–Zel'dovich effect and excess millimetre emission in quasar environments. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2315-2335.	1.6	16
28	Weak-lensing Mass Calibration of ACTPol Sunyaev–Zel'dovich Clusters with the Hyper Suprime-Cam Survey. Astrophysical Journal, 2019, 875, 63.	1.6	72
29	Measurement of the splashback feature around SZ-selected Galaxy clusters with DES, SPT, and ACT. Monthly Notices of the Royal Astronomical Society, 2019, 487, 2900-2918.	1.6	52
30	The Simons Observatory: science goals and forecasts. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 056-056.	1.9	741
31	The Atacama Cosmology Telescope: two-season ACTPol extragalactic point sources and their polarization properties. Monthly Notices of the Royal Astronomical Society, 2019, 486, 5239-5262.	1.6	27
32	Cosmic Microwave Background Mapmaking with a Messenger Field. Astrophysical Journal, 2018, 852, 92.	1.6	8
33	Preconditioner-free Wiener filtering with a dense noise matrix. Monthly Notices of the Royal Astronomical Society, 2018, 476, 3425-3431.	1.6	4
34	The Atacama Cosmology Telescope: The Two-season ACTPol Sunyaev–Zel'dovich Effect Selected Cluster Catalog. Astrophysical Journal, Supplement Series, 2018, 235, 20.	3.0	121
35	The Atacama Cosmology Telescope: two-season ACTPol spectra and parameters. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 031-031.	1.9	120
36	Two-season Atacama Cosmology Telescope polarimeter lensing power spectrum. Physical Review D, 2017, 95, .	1.6	104

#	Article	IF	CITATIONS
37	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 586, A140.	2.1	89
38	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 586, A134.	2.1	48
39	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A28.	2.1	134
40	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A7.	2.1	94
41	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A10.	2.1	384
42	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A23.	2.1	89
43	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A12.	2.1	117
44	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A24.	2.1	525
45	The Atacama Cosmology Telescope: dynamical masses for 44 SZ-selected galaxy clusters over 755 square degrees. Monthly Notices of the Royal Astronomical Society, 2016, 461, 248-270.	1.6	38
46	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 586, A132.	2.1	109
47	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A6.	2.1	62
48	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A2.	2.1	79
49	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A8.	2.1	209
50	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A9.	2.1	182
51	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 586, A141.	2.1	55
52	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 596, A100.	2.1	44
53	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A5.	2.1	55
54	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A4.	2.1	56

#	Article	IF	CITATIONS
55	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A18.	2.1	69
56	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A21.	2.1	114
57	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A3.	2.1	53
58	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A19.	2.1	273
59	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A16.	2.1	338
60	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A20.	2.1	1,233
61	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 596, A101.	2.1	24
62	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A27.	2.1	535
63	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 586, A138.	2.1	270
64	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A1.	2.1	738
65	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A14.	2.1	568
66	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A15.	2.1	360
67	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A25.	2.1	153
68	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 586, A133.	2.1	173
69	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 586, A137.	2.1	27
70	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A13.	2.1	8,344
71	Advanced ACTPol Cryogenic Detector Arrays and Readout. Journal of Low Temperature Physics, 2016, 184, 772-779.	0.6	240
72	Isotropy-violation diagnostics for <i>B</i> -mode polarization foregrounds to the Cosmic Microwave Background. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 034-034.	1.9	6

#	Article	IF	CITATIONS
73	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A22.	2.1	274
74	Planckintermediate results. Astronomy and Astrophysics, 2016, 596, A106.	2.1	23
75	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 586, A135.	2.1	109
76	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 586, A136.	2.1	72
77	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A26.	2.1	182
78	<i>Planck</i> iiiintermediate results. Astronomy and Astrophysics, 2016, 586, A139.	2.1	32
79	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A17.	2.1	440
80	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A11.	2.1	613
81	THE Q/U IMAGING EXPERIMENT: POLARIZATION MEASUREMENTS OF THE GALACTIC PLANE AT 43 AND 95 GHz. Astrophysical Journal, 2015, 811, 89.	1.6	9
82	<i>Planck</i> iiiitermediate results. Astronomy and Astrophysics, 2015, 580, A22.	2.1	80
83	<i>Planck</i> intermediate results. XXVI. Optical identification and redshifts of <i>Planck</i> clusters with the RTT150 telescope. Astronomy and Astrophysics, 2015, 582, A29.	2.1	46
84	<i>Planck</i> iiiintermediate results. Astronomy and Astrophysics, 2015, 582, A30.	2.1	72
85	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2015, 582, A31.	2.1	59
86	<i>Planck</i> 2013 results. XXXII. The updated <i>Planck</i> catalogue of Sunyaev-Zeldovich sources. Astronomy and Astrophysics, 2015, 581, A14.	2.1	80
87	<i>Planck</i> intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust. Astronomy and Astrophysics, 2015, 576, A104.	2.1	296
88	<i>Planck</i> ii>intermediate results. XX. Comparison of polarized thermal emission from Galactic dust with simulations of MHD turbulence. Astronomy and Astrophysics, 2015, 576, A105.	2.1	119
89	<i>Planck</i> ii>intermediate results. XXI. Comparison of polarized thermal emission from Galactic dust at 353 GHz with interstellar polarization in the visible. Astronomy and Astrophysics, 2015, 576, A106.	2.1	68
90	<i>Planck</i> intermediate results. XVIII. The millimetre and sub-millimetre emission from planetary nebulae. Astronomy and Astrophysics, 2015, 573, A6.	2.1	13

#	Article	IF	Citations
91	<i>Planck</i> iiiitermediate results. Astronomy and Astrophysics, 2015, 580, A13.	2.1	37
92	<i>Planck</i> iiitermediate results. Astronomy and Astrophysics, 2015, 582, A28.	2.1	33
93	Joint Analysis of BICEP2/ <i>Keck Array</i> and <i>Planck</i> Data. Physical Review Letters, 2015, 114, 101301.	2.9	819
94	THE Q/U IMAGING EXPERIMENT: POLARIZATION MEASUREMENTS OF RADIO SOURCES AT 43 AND 95 GHz. Astrophysical Journal, 2015, 806, 112.	1.6	5
95	THE ATACAMA COSMOLOGY TELESCOPE: LENSING OF CMB TEMPERATURE AND POLARIZATION DERIVED FROM COSMIC INFRARED BACKGROUND CROSS-CORRELATION. Astrophysical Journal, 2015, 808, 7.	1.6	66
96	THE ATACAMA COSMOLOGY TELESCOPE: THE LABOCA/ACT SURVEY OF CLUSTERS AT ALL REDSHIFTS. Astrophysical Journal, 2015, 803, 79.	1.6	10
97	<i>Planck</i> 2013 results. XIV. Zodiacal emission. Astronomy and Astrophysics, 2014, 571, A14.	2.1	90
98	<i>Planck</i> 2013 results. VI. High Frequency Instrument data processing. Astronomy and Astrophysics, 2014, 571, A6.	2.1	103
99	<i>Planck</i> 2013 results. X. HFI energetic particle effects: characterization, removal, and simulation. Astronomy and Astrophysics, 2014, 571, A10.	2.1	68
100	<i>Planck</i> 2013 results. XXXI. Consistency of the <i>Planck</i> data. Astronomy and Astrophysics, 2014, 571, A31.	2.1	69
101	<i>Planck</i> 2013 results. V. LFI calibration. Astronomy and Astrophysics, 2014, 571, A5.	2.1	67
102	<i>Planck</i> 2013 results. XXVII. Doppler boosting of the CMB: Eppur si muove. Astronomy and Astrophysics, 2014, 571, A27.	2.1	170
103	<i>Planck</i> 2013 results. III. LFI systematic uncertainties. Astronomy and Astrophysics, 2014, 571, A3.	2.1	54
104	<i>Planck</i> 2013 results. XII. Diffuse component separation. Astronomy and Astrophysics, 2014, 571, A12.	2.1	216
105	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2014, 566, A54.	2.1	80
106	<i>Planck</i> 2013 results. XIII. Galactic CO emission. Astronomy and Astrophysics, 2014, 571, A13.	2.1	144
107	<i>Planck</i> 2013 results. XI. All-sky model of thermal dust emission. Astronomy and Astrophysics, 2014, 571, A11.	2.1	566
108	X-RAY AND SUNYAEV-ZEL'DOVICH PROPERTIES OF THE WARM-HOT INTERGALACTIC MEDIUM. Astrophysical Journal, 2014, 789, 55.	1.6	8

#	Article	IF	CITATIONS
109	A measurement of the millimetre emission and the Sunyaev–Zel'dovich effect associated with low-frequency radio sources. Monthly Notices of the Royal Astronomical Society, 2014, 445, 460-478.	1.6	35
110	The Atacama Cosmology Telescope: cross correlation with <i>Planck </i> maps. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 016-016.	1.9	27
111	The Atacama Cosmology Telescope: temperature and gravitational lensing power spectrum measurements from three seasons of data. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 014-014.	1.9	194
112	The Atacama Cosmology Telescope: CMB polarization at 200 < â,," < 9000. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 007-007.	1.9	121
113	<i>Planck</i> 2013 results. I. Overview of products and scientific results. Astronomy and Astrophysics, 2014, 571, A1.	2.1	948
114	<i>Planck</i> 2013 results. XXX. Cosmic infrared background measurements and implications for star formation. Astronomy and Astrophysics, 2014, 571, A30.	2.1	210
115	<i>Planck</i> 2013 results. XXV. Searches for cosmic strings and other topological defects. Astronomy and Astrophysics, 2014, 571, A25.	2.1	223
116	Planck intermediate results. Astronomy and Astrophysics, 2014, 566, A55.	2.1	134
117	<i>Planck</i> 2013 results. XV. CMB power spectra and likelihood. Astronomy and Astrophysics, 2014, 571, A15.	2.1	364
118	<i>Planck</i> >2013 results. XX. Cosmology from Sunyaev–Zeldovich cluster counts. Astronomy and Astrophysics, 2014, 571, A20.	2.1	465
119	<i>Planck</i> 2013 results. XXI. Power spectrum and high-order statistics of the <i>Planck</i> all-sky Compton parameter map. Astronomy and Astrophysics, 2014, 571, A21.	2.1	133
120	<i>Planck</i> 2013 results. XXIX. The <i>Planck</i> catalogue of Sunyaev-Zeldovich sources. Astronomy and Astrophysics, 2014, 571, A29.	2.1	380
121	<i>Planck</i> 2013 results. XXVIII. The <i>Planck</i> Catalogue of Compact Sources. Astronomy and Astrophysics, 2014, 571, A28.	2.1	162
122	<i>Planck</i> 2013 results. XIX. The integrated Sachs-Wolfe effect. Astronomy and Astrophysics, 2014, 571, A19.	2.1	126
123	<i>Planck</i> 2013 results. IX. HFI spectral response. Astronomy and Astrophysics, 2014, 571, A9.	2.1	129
124	<i>Planck</i> 2013 results. XXIII. Isotropy and statistics of the CMB. Astronomy and Astrophysics, 2014, 571, A23.	2.1	367
125	<i>Planck</i> 2013 results. VII. HFI time response and beams. Astronomy and Astrophysics, 2014, 571, A7.	2.1	99
126	<i>Planck</i> 2013 results. VIII. HFI photometric calibration and mapmaking. Astronomy and Astrophysics, 2014, 571, A8.	2.1	107

#	Article	IF	CITATIONS
127	<i>Planck</i> 2013 results. XVIII. The gravitational lensing-infrared background correlation. Astronomy and Astrophysics, 2014, 571, A18.	2.1	116
128	<i>Planck</i> 2013 results. IV. Low Frequency Instrument beams and window functions. Astronomy and Astrophysics, 2014, 571, A4.	2.1	41
129	<i>Planck</i> 2013 results. XXVI. Background geometry and topology of the Universe. Astronomy and Astrophysics, 2014, 571, A26.	2.1	91
130	<i>Planck</i> 2013 results. II. Low Frequency Instrument data processing. Astronomy and Astrophysics, 2014, 571, A2.	2.1	74
131	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2014, 561, A97.	2.1	80
132	<i>Planck</i> 2013 results. XVII. Gravitational lensing by large-scale structure. Astronomy and Astrophysics, 2014, 571, A17.	2.1	272
133	<i>Planck</i> 2013 results. XXIV. Constraints on primordial non-Gaussianity. Astronomy and Astrophysics, 2014, 571, A24.	2.1	350
134	<i>Planck</i> 2013 results. XXII. Constraints on inflation. Astronomy and Astrophysics, 2014, 571, A22.	2.1	806
135	<i>Planck</i> 2013 results. XVI. Cosmological parameters. Astronomy and Astrophysics, 2014, 571, A16.	2.1	4,703
136	Baryon impact on weak lensing peaks and power spectrum: Low-bias statistics and self-calibration in future surveys. Physical Review D, 2013, 87, .	1.6	39
137	The Atacama Cosmology Telescope: cosmological parameters from three seasons of data. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 060-060.	1.9	215
138	EFFECT OF MEASUREMENT ERRORS ON PREDICTED COSMOLOGICAL CONSTRAINTS FROM SHEAR PEAK STATISTICS WITH LARGE SYNOPTIC SURVEY TELESCOPE. Astrophysical Journal, 2013, 774, 49.	1.6	20
139	THE Q/U IMAGING EXPERIMENT INSTRUMENT. Astrophysical Journal, 2013, 768, 9.	1.6	45
140	<i>Planck</i> iiitermediate results. Astronomy and Astrophysics, 2013, 557, A52.	2.1	141
141	<i>Planck</i> Âintermediate results. XII: Diffuse Galactic components in the Gould Belt system. Astronomy and Astrophysics, 2013, 557, A53.	2.1	19
142	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2013, 554, A140.	2.1	101
143	RECONSTRUCTING THE SHAPE OF THE CORRELATION FUNCTION. Astrophysical Journal, Supplement Series, 2013, 206, 23.	3.0	0
144	<i>Planck</i> ii>intermediate results. Astronomy and Astrophysics, 2013, 550, A128.	2.1	20

#	Article	IF	Citations
145	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2013, 550, A130.	2.1	36
146	THE ATACAMA COSMOLOGY TELESCOPE: DATA CHARACTERIZATION AND MAPMAKING. Astrophysical Journal, 2013, 762, 10.	1.6	70
147	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2013, 554, A139.	2.1	106
148	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2013, 550, A129.	2.1	63
149	The Atacama Cosmology Telescope: Cross-correlation of cosmic microwave background lensing and quasars. Physical Review D, 2012, 86, .	1.6	91
150	Probing cosmology with weak lensing Minkowski functionals. Physical Review D, 2012, 85, .	1.6	73
151	Atacama Cosmology Telescope: A measurement of the thermal Sunyaev-Zel'dovich effect using the skewness of the CMB temperature distribution. Physical Review D, 2012, 86, .	1.6	34
152	SECOND SEASON QUIET OBSERVATIONS: MEASUREMENTS OF THE COSMIC MICROWAVE BACKGROUND POLARIZATION POWER SPECTRUM AT 95 GHz. Astrophysical Journal, 2012, 760, 145.	1.6	79
153	THE ATACAMA COSMOLOGY TELESCOPE: HIGH-RESOLUTION SUNYAEV-ZEL'DOVICH ARRAY OBSERVATIONS OF ACT SZE-SELECTED CLUSTERS FROM THE EQUATORIAL STRIP. Astrophysical Journal, 2012, 751, 12.	1.6	23
154	<i>Planck</i> iiitermediate results. Astronomy and Astrophysics, 2012, 543, A102.	2.1	50
155	Stacking catalogue sources in WMAP data. Monthly Notices of the Royal Astronomical Society, 2012, 424, 3028-3036.	1.6	2
156	Detection of the Power Spectrum of Cosmic Microwave Background Lensing by the Atacama Cosmology Telescope. Physical Review Letters, 2011, 107, 021301.	2.9	225
157	<i>Planck</i> early results. XXI. Properties of the interstellar medium in the Galactic plane. Astronomy and Astrophysics, 2011, 536, A21.	2.1	119
158	<i>Planck</i> early results. XVIII. The power spectrum of cosmic infrared background anisotropies. Astronomy and Astrophysics, 2011, 536, A18.	2.1	180
159	<i>Planck</i> early results. XIII. Statistical properties of extragalactic radio sources in the <i>Planck</i> Early Release Compact Source Catalogue. Astronomy and Astrophysics, 2011, 536, A13.	2.1	103
160	<i>Planck</i> early results. XVII. Origin of the submillimetre excess dust emission in the Magellanic Clouds. Astronomy and Astrophysics, 2011, 536, A17.	2.1	123
161	<i>Planck</i> early results. XII. Cluster Sunyaev-Zeldovich optical scaling relations. Astronomy and Astrophysics, 2011, 536, A12.	2.1	100
162	<i>Planck</i> early results. II. The thermal performance of <i>Planck</i> . Astronomy and Astrophysics, 2011, 536, A2.	2.1	91

#	Article	IF	Citations
163	<i>Planck</i> early results. XX. New light on anomalous microwave emission from spinning dust grains. Astronomy and Astrophysics, 2011, 536, A20.	2.1	155
164	<i>Planck</i> early results. XXV. Thermal dust in nearby molecular clouds. Astronomy and Astrophysics, 2011, 536, A25.	2.1	184
165	<i>Planck</i> early results. XXII. The submillimetre properties of a sample of Galactic cold clumps. Astronomy and Astrophysics, 2011, 536, A22.	2.1	88
166	<i>Planck</i> early results. VI. The High Frequency Instrument data processing. Astronomy and Astrophysics, 2011, 536, A6.	2.1	116
167	<i>Planck</i> early results. XXIII. The first all-sky survey of Galactic cold clumps. Astronomy and Astrophysics, 2011, 536, A23.	2.1	152
168	<i>Planck</i> early results. XVI. The <i>Planck</i> view of nearby galaxies. Astronomy and Astrophysics, 2011, 536, A16.	2.1	74
169	<i>Planck</i> early results. VII. The Early Release Compact Source Catalogue. Astronomy and Astrophysics, 2011, 536, A7.	2.1	224
170	<i>Planck</i> early results. XIX. All-sky temperature and dust optical depth from <i>Planck</i> and IRAS. Constraints on the "dark gas―in our Galaxy. Astronomy and Astrophysics, 2011, 536, A19.	2.1	314
171	<i>Planck</i> early results. XXIV. Dust in the diffuse interstellar medium and the Galactic halo. Astronomy and Astrophysics, 2011, 536, A24.	2.1	179
172	<i>Planck</i> early results. X. Statistical analysis of Sunyaev-Zeldovich scaling relations for X-ray galaxy clusters. Astronomy and Astrophysics, 2011, 536, A10.	2.1	124
173	<i>Planck</i> early results. XI. Calibration of the local galaxy cluster Sunyaev-Zeldovich scaling relations. Astronomy and Astrophysics, 2011, 536, A11.	2.1	174
174	Planckearly results. XIV. ERCSC validation and extreme radio sources. Astronomy and Astrophysics, 2011, 536, A14.	2.1	61
175	<i>Planck</i> early results. IV. First assessment of the High Frequency Instrument in-flight performance. Astronomy and Astrophysics, 2011, 536, A4.	2.1	136
176	<i>Planck</i> early results. VIII. The all-sky early Sunyaev-Zeldovich cluster sample. Astronomy and Astrophysics, 2011, 536, A8.	2.1	335
177	<i>Planck</i> early results. XV. Spectral energy distributions and radio continuum spectra of northern extragalactic radio sources. Astronomy and Astrophysics, 2011, 536, A15.	2.1	93
178	<i>Planck</i> early results. I. The <i>Planck</i> mission. Astronomy and Astrophysics, 2011, 536, A1.	2.1	394
179	THE ATACAMA COSMOLOGY TELESCOPE: COSMOLOGY FROM GALAXY CLUSTERS DETECTED VIA THE SUNYAEV-ZEL'DOVICH EFFECT. Astrophysical Journal, 2011, 732, 44.	1.6	140
180	THE ATACAMA COSMOLOGY TELESCOPE: CALIBRATION WITH THE <i>WILKINSON MICROWAVE ANISOTROPY PROBE </i> I>USING CROSS-CORRELATIONS. Astrophysical Journal, 2011, 740, 86.	1.6	34

#	Article	IF	CITATIONS
181	THE ATACAMA COSMOLOGY TELESCOPE: EXTRAGALACTIC SOURCES AT 148 GHz IN THE 2008 SURVEY. Astrophysical Journal, 2011, 731, 100.	1.6	7 5
182	FIRST SEASON QUIET OBSERVATIONS: MEASUREMENTS OF COSMIC MICROWAVE BACKGROUND POLARIZATION POWER SPECTRA AT 43 GHz IN THE MULTIPOLE RANGE 25 â@½ \$ell\$ â@½ 475. Astrophysical Jo 2011, 741, 111.	o uro al,	84
183	THE ATACAMA COSMOLOGY TELESCOPE: A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND POWER SPECTRUM AT 148 AND 218 GHz FROM THE 2008 SOUTHERN SURVEY. Astrophysical Journal, 2011, 729, 62.	1.6	144
184	FAST PIXEL SPACE CONVOLUTION FOR COSMIC MICROWAVE BACKGROUND SURVEYS WITH ASYMMETRIC BEAMS AND COMPLEX SCAN STRATEGIES: FEBeCoP. Astrophysical Journal, Supplement Series, 2011, 193, 5.	3.0	58
185	THE ATACAMA COSMOLOGY TELESCOPE: COSMOLOGICAL PARAMETERS FROM THE 2008 POWER SPECTRUM. Astrophysical Journal, 2011, 739, 52.	1.6	329
186	THE ATACAMA COSMOLOGY TELESCOPE: SUNYAEV-ZEL'DOVICH-SELECTED GALAXY CLUSTERS AT 148 GHz IN THE 2008 SURVEY. Astrophysical Journal, 2011, 737, 61.	1.6	234
187	<i>Planck</i> early results. IX. <i>XMM-Newton</i> follow-up for validation of <i>Planck</i> cluster candidates. Astronomy and Astrophysics, 2011, 536, A9.	2.1	126
188	Measuring Planck beams with planets. Astronomy and Astrophysics, 2010, 510, A58.	2.1	16
189	<i>Planck</i> pre-launch status: The <i>Planck</i> mission. Astronomy and Astrophysics, 2010, 520, A1.	2.1	268
190	SIMULATIONS OF THE MICROWAVE SKY. Astrophysical Journal, 2010, 709, 920-936.	1.6	158
191	THE ATACAMA COSMOLOGY TELESCOPE: A MEASUREMENT OF THE 600 & t; â, " & t; 8000 COSMIC MICROWAVE BACKGROUND POWER SPECTRUM AT 148 GHz. Astrophysical Journal, 2010, 722, 1148-1161.	1.6	107
192	THE ATACAMA COSMOLOGY TELESCOPE: PHYSICAL PROPERTIES AND PURITY OF A GALAXY CLUSTER SAMPLE SELECTED VIA THE SUNYAEV-ZEL'DOVICH EFFECT. Astrophysical Journal, 2010, 723, 1523-1541.	1.6	98
193	Markov chain beam randomization: a study of the impact of PLANCK beam measurement errors on cosmological parameter estimation. Astronomy and Astrophysics, 2010, 513, A23.	2.1	6
194	THE ATACAMA COSMOLOGY TELESCOPE (ACT): BEAM PROFILES AND FIRST SZ CLUSTER MAPS. Astrophysical Journal, Supplement Series, 2010, 191, 423-438.	3.0	79
195	FAST AND EXACT SPIN- <i>></i> > SPHERICAL HARMONIC TRANSFORMS. Astrophysical Journal, Supplement Series, 2010, 189, 255-260.	3.0	30
196	SPECTRAL ENERGY DISTRIBUTION OF RADIO SOURCES IN NEARBY CLUSTERS OF GALAXIES: IMPLICATIONS FOR SUNYAEV-ZEL'DOVICH EFFECT SURVEYS. Astrophysical Journal, 2009, 694, 992-1009.	1.6	56
197	CALISTO: the Cryogenic Aperture Large Infrared Space Telescope Observatory. , 2008, , .		5
198	The Scalar Perturbation Spectral Index <i>n</i> _{<i>s</i>} : <i>WMAP</i> Sensitivity to Unresolved Point Sources. Astrophysical Journal, 2008, 688, 1-11.	1.6	13

#	Article	IF	CITATIONS
199	Microwave Sky Simulations and Projections for Galaxy Cluster Detection with the Atacama Cosmology Telescope. Astrophysical Journal, 2007, 664, 149-161.	1.6	32
200	Point-Source Power in 3 Year Wilkinson Microwave Anisotropy Probe Data. Astrophysical Journal, 2006, 651, L81-L84.	1.6	35
201	Prospects for ACT: Simulations, power spectrum, and non-Gaussian analysis. New Astronomy, 2005, 10, 491-515.	0.8	15
202	Reconstructing Sunyaev-Zel'dovich clusters in future cosmic microwave background experiments. Monthly Notices of the Royal Astronomical Society, 2005, 359, 261-271.	1.6	25
203	Sunyaev-Zeldovich effect in WMAP and its effect on cosmological parameters. Physical Review D, 2004, 70, .	1.6	18
204	Halo concentration and the dark matter power spectrum. Monthly Notices of the Royal Astronomical Society, 2003, 340, 1199-1204.	1.6	25
205	Binary-induced collapse of a compact, collisionless cluster. Physical Review D, 1999, 60, .	1.6	6
206	Evidence for the Thermal Sunyaev-Zel'dovich Effect Associated with Quasar Feedback. Monthly Notices of the Royal Astronomical Society, 0, , stw344.	1.6	28