Xiao-Xing Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10093904/publications.pdf

Version: 2024-02-01

	840776	713466
670	11	21
citations	h-index	g-index
30	30	486
docs citations	times ranked	citing authors
	citations 30	670 11 citations h-index 30 30

#	Article	IF	CITATIONS
1	Topological optimization of two-dimensional phononic crystals based on the finite element method and genetic algorithm. Structural and Multidisciplinary Optimization, 2014, 50, 593-604.	3.5	147
2	Large bandgaps of two-dimensional phononic crystals with cross-like holes. Journal of Applied Physics, $2011,110,.$	2.5	137
3	Multi-objective optimization of two-dimensional porous phononic crystals. Journal Physics D: Applied Physics, 2014, 47, 155301.	2.8	87
4	Topology optimization of two-dimensional asymmetrical phononic crystals. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 434-441.	2.1	67
5	Topology optimization of simultaneous photonic and phononic bandgaps and highly effective phoxonic cavity. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 2946.	2.1	32
6	Effects of Poisson's ratio on the band gaps and defect states in two-dimensional vacuum/solid porous phononic crystals. Ultrasonics, 2012, 52, 255-265.	3.9	31
7	Three-dimensional dielectric phoxonic crystals with network topology. Optics Express, 2013, 21, 2727.	3.4	30
8	Theoretical research on a two-dimensional phoxonic crystal liquid sensor by utilizing surface optical and acoustic waves. Sensors and Actuators A: Physical, 2016, 242, 123-131.	4.1	27
9	Acousto-optical interaction of surface acoustic and optical waves in a two-dimensional phoxonic crystal hetero-structure cavity. Optics Express, 2014, 22, 28443.	3.4	25
10	Effects of material parameters on elastic band gaps of three-dimensional solid phononic crystals. Physica Scripta, 2013, 87, 055604.	2.5	15
11	A postprocessing method based on high-resolution spectral estimation for FDTD calculation of phononic band structures. Physica B: Condensed Matter, 2010, 405, 2444-2449.	2.7	12
12	Elastic band structures of two-dimensional solid phononic crystal with negative Poisson's ratios. Physica B: Condensed Matter, 2012, 407, 4186-4192.	2.7	11
13	Simultaneous guiding of slow elastic and light waves in three-dimensional topology-type phoxonic crystals with a line defect. Journal of Optics (United Kingdom), 2014, 16, 085002.	2.2	10
14	A fast interrogation system of FBG sensors based on low loss jammed-array wideband sawtooth filter. Optical Fiber Technology, 2019, 48, 128-133.	2.7	10
15	A postprocessing method based on chirp Z transform for FDTD calculation of point defect states in two-dimensional phononic crystals. Physica B: Condensed Matter, 2010, 405, 3645-3649.	2.7	8
16	Theoretical study on the stimulated Brillouin scattering in a sub-wavelength anisotropic waveguide: acousto-optical coupling coefficients and effects of transverse anisotropies. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 2599.	2.1	5
17	Finite difference time domain calculation of three-dimensional phononic band structures using a postprocessing method based on the filter diagonalization. Physica Scripta, 2011, 84, 045404.	2,5	4
18	Three-dimensional acoustic circuits with coupled resonators in phononic crystals. Journal of Sound and Vibration, 2022, 536, 117115.	3.9	4

#	Article	IF	CITATIONS
19	Topology optimization of two-dimensional phononic crystals using FEM and genetic algorithm. , 2012, , .		3
20	A matrix-exponential decomposition based time-domain method for calculating the defect states of scalar waves in two-dimensional periodic structures. Journal of Computational Physics, 2017, 337, 403-420.	3.8	2
21	A matrixâ€exponential decompositionâ€based timeâ€domain method for band structure calculation of oneâ€dimensional periodic structures. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2016, 29, 773-791.	1.9	1
22	Stimulated Brillouin scattering in a sub-wavelength anisotropic waveguide with slightly-misaligned material and structural axes: misalignment-sensitive behaviors and underlying physics. Journal of Optics (United Kingdom), 2022, 24, 045002.	2.2	1
23	Dynamic response of the half-space subjected to a moving point load and thermal stress. Physica Scripta, 0, , .	2.5	1
24	Calculation of energy bands of two-dimensional phononic crystals with a hexagonal lattice by using FDTD method. , $2009, , .$		0
25	Calculation of three-dimensional phononic band structures using the combined method of FDTD and filter diagonalization. , 2010 , , .		0
26	Topology optimization of two-dimensional phononic crystals using FDTD and genetic algorithm. , 2011, , .		0
27	Effects of poisson's ratio on the band gaps of three-dimensional solid/solid phononic crystals. , 2011, ,		0
28	An improvement of the filter diagonalization-based post-processing method applied to finite difference time domain calculations of three-dimensional phononic band structures. Physica Scripta, 2012, 86, 045401.	2.5	0
29	Research on the GPU implementation of the FDTD method for thetwo-dimensional phononic band structure calculations. , 2014, , .		0
30	Band structure calculation of one-dimensional periodic structures by a time-domain method based on matrix-exponential decomposition technique., 2015,,.		0