Paolo Pinton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1009225/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	5.0	4,036
3	Close Contacts with the Endoplasmic Reticulum as Determinants of Mitochondrial Ca2+ Responses. Science, 1998, 280, 1763-1766.	6.0	2,045
4	Electron Transfer between Cytochrome c and p66Shc Generates Reactive Oxygen Species that Trigger Mitochondrial Apoptosis. Cell, 2005, 122, 221-233.	13.5	1,041
5	Regulation of autophagy by cytoplasmic p53. Nature Cell Biology, 2008, 10, 676-687.	4.6	1,025
6	Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene, 2008, 27, 6407-6418.	2.6	944
7	Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death and Differentiation, 2015, 22, 58-73.	5.0	811
8	Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells. Nature Protocols, 2009, 4, 1582-1590.	5.5	726
9	Regulation of mitochondrial ATP synthesis by calcium: Evidence for a long-term metabolic priming. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 13807-13812.	3.3	724
10	The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: significance for the molecular mechanism of Bcl-2 action. EMBO Journal, 2001, 20, 2690-2701.	3.5	533
11	The machineries, regulation and cellular functions of mitochondrial calcium. Nature Reviews Molecular Cell Biology, 2018, 19, 713-730.	16.1	516
12	Mitochondria-Ros Crosstalk in the Control of Cell Death and Aging. Journal of Signal Transduction, 2012, 2012, 1-17.	2.0	488
13	Protein Kinase C Â and Prolyl Isomerase 1 Regulate Mitochondrial Effects of the Life-Span Determinant p66Shc. Science, 2007, 315, 659-663.	6.0	448
14	Calcium and apoptosis: facts and hypotheses. Oncogene, 2003, 22, 8619-8627.	2.6	439
15	Reduced Loading of Intracellular Ca2+ Stores and Downregulation of Capacitative Ca2+Influx in Bcl-2–Overexpressing Cells. Journal of Cell Biology, 2000, 148, 857-862.	2.3	435
16	Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death. Cell Calcium, 2018, 69, 62-72.	1.1	435
17	Role of the c subunit of the F _O ATP synthase in mitochondrial permeability transition. Cell Cycle, 2013, 12, 674-683.	1.3	416
18	The Golgi apparatus is an inositol 1,4,5-trisphosphate-sensitive Ca2+ store, with functional properties distinct from those of the endoplasmic reticulum. EMBO Journal, 1998, 17, 5298-5308.	3.5	415

#	Article	IF	CITATIONS
19	Recombinant expression of the voltage-dependent anion channel enhances the transfer of Ca2+ microdomains to mitochondria. Journal of Cell Biology, 2002, 159, 613-624.	2.3	400
20	Ca2+ transfer from the ER to mitochondria: When, how and why. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 1342-1351.	0.5	396
21	The endoplasmic reticulum–mitochondria connection: One touch, multiple functions. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 461-469.	0.5	392
22	Mitochondrial Ca2+ and apoptosis. Cell Calcium, 2012, 52, 36-43.	1.1	361
23	PML Regulates Apoptosis at Endoplasmic Reticulum by Modulating Calcium Release. Science, 2010, 330, 1247-1251.	6.0	360
24	ATP synthesis and storage. Purinergic Signalling, 2012, 8, 343-357.	1.1	340
25	Systemic Elevation of PTEN Induces a Tumor-Suppressive Metabolic State. Cell, 2012, 149, 49-62.	13.5	339
26	Structural and functional link between the mitochondrial network and the endoplasmic reticulum. International Journal of Biochemistry and Cell Biology, 2009, 41, 1817-1827.	1.2	337
27	Relation Between Mitochondrial Membrane Potential and ROS Formation. Methods in Molecular Biology, 2012, 810, 183-205.	0.4	318
28	BAP1 regulates IP3R3-mediated Ca2+ flux to mitochondria suppressing cell transformation. Nature, 2017, 546, 549-553.	13.7	308
29	Calcium signaling around Mitochondria Associated Membranes (MAMs). Cell Communication and Signaling, 2011, 9, 19.	2.7	304
30	A Novel Recombinant Plasma Membrane-targeted Luciferase Reveals a New Pathway for ATP Secretion. Molecular Biology of the Cell, 2005, 16, 3659-3665.	0.9	283
31	pH difference across the outer mitochondrial membrane measured with a green fluorescent protein mutant. Biochemical and Biophysical Research Communications, 2005, 326, 799-804.	1.0	259
32	Ca2+ Signaling, Mitochondria and Cell Death. Current Molecular Medicine, 2008, 8, 119-130.	0.6	258
33	VDAC1 selectively transfers apoptotic Ca2+ signals to mitochondria. Cell Death and Differentiation, 2012, 19, 267-273.	5.0	255
34	Mitochondria, calcium and cell death: A deadly triad in neurodegeneration. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 335-344.	0.5	254
35	Methods to Monitor ROS Production by Fluorescence Microscopy and Fluorometry. Methods in Enzymology, 2014, 542, 243-262.	0.4	253
36	p53 at the endoplasmic reticulum regulates apoptosis in a Ca ²⁺ -dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1779-1784.	3.3	247

#	Article	IF	CITATIONS
37	Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition. Oncogene, 2015, 34, 1475-1486.	2.6	244
38	High glucose induces adipogenic differentiation of muscle-derived stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1226-1231.	3.3	243
39	Mitochondria-Associated Membranes: Composition, Molecular Mechanisms, and Physiopathological Implications. Antioxidants and Redox Signaling, 2015, 22, 995-1019.	2.5	243
40	Basal Activation of the P2X7 ATP Receptor Elevates Mitochondrial Calcium and Potential, Increases Cellular ATP Levels, and Promotes Serum-independent Growth. Molecular Biology of the Cell, 2005, 16, 3260-3272.	0.9	242
41	Cancer-Associated PTEN Mutants Act in a Dominant-Negative Manner to Suppress PTEN Protein Function. Cell, 2014, 157, 595-610.	13.5	235
42	The mitochondrial calcium uniporter complex: molecular components, structure and physiopathological implications. Journal of Physiology, 2014, 592, 829-839.	1.3	232
43	A STAT3-mediated metabolic switch is involved in tumour transformation and STAT3 addiction. Aging, 2010, 2, 823-842.	1.4	231
44	Protein Kinases and Phosphatases in the Control of Cell Fate. Enzyme Research, 2011, 2011, 1-26.	1.8	229
45	Bcl-2 and Ca2+ homeostasis in the endoplasmic reticulum. Cell Death and Differentiation, 2006, 13, 1409-1418.	5.0	224
46	Mitochondria and Reactive Oxygen Species in Aging and Age-Related Diseases. International Review of Cell and Molecular Biology, 2018, 340, 209-344.	1.6	208
47	Identification of PTEN at the ER and MAMs and its regulation of Ca2+ signaling and apoptosis in a protein phosphatase-dependent manner. Cell Death and Differentiation, 2013, 20, 1631-1643.	5.0	204
48	Downregulation of the Mitochondrial Calcium Uniporter by Cancer-Related miR-25. Current Biology, 2013, 23, 58-63.	1.8	198
49	Molecular identity of the mitochondrial permeability transition pore and its role in ischemia-reperfusion injury. Journal of Molecular and Cellular Cardiology, 2015, 78, 142-153.	0.9	194
50	Melatonin as a master regulator of cell death and inflammation: molecular mechanisms and clinical implications for newborn care. Cell Death and Disease, 2019, 10, 317.	2.7	189
51	Dense core secretory vesicles revealed as a dynamic Ca2+store in neuroendocrine cells with a vesicle-associated membrane protein aequorin chimaera. Journal of Cell Biology, 2001, 155, 41-52.	2.3	188
52	Targeting mitochondria for cardiovascular disorders: therapeutic potential and obstacles. Nature Reviews Cardiology, 2019, 16, 33-55.	6.1	188
53	Mitochondria in non-alcoholic fatty liver disease. International Journal of Biochemistry and Cell Biology, 2018, 95, 93-99.	1.2	183
54	PTEN counteracts FBXL2 to promote IP3R3- and Ca2+-mediated apoptosis limiting tumour growth. Nature, 2017, 546, 554-558.	13.7	182

#	Article	IF	CITATIONS
55	Ero1α Regulates Ca ²⁺ Fluxes at the Endoplasmic Reticulum–Mitochondria Interface (MAM). Antioxidants and Redox Signaling, 2012, 16, 1077-1087.	2.5	180
56	The metabolic co-regulator PGC1α suppresses prostate cancer metastasis. Nature Cell Biology, 2016, 18, 645-656.	4.6	176
57	Calcium Dynamics as a Machine for Decoding Signals. Trends in Cell Biology, 2018, 28, 258-273.	3.6	176
58	Molecular mechanisms and consequences of mitochondrial permeability transition. Nature Reviews Molecular Cell Biology, 2022, 23, 266-285.	16.1	174
59	The P2X7 receptor directly interacts with the NLRP3 inflammasome scaffold protein. FASEB Journal, 2015, 29, 2450-2461.	0.2	169
60	Mitochondria as biosensors of calcium microdomains. Cell Calcium, 1999, 26, 193-200.	1.1	164
61	Interaction of Mitochondria with the Endoplasmic Reticulum and Plasma Membrane in Calcium Homeostasis, Lipid Trafficking and Mitochondrial Structure. International Journal of Molecular Sciences, 2017, 18, 1576.	1.8	164
62	Mitochondrial permeability transition involves dissociation of F ₁ <scp>F_O ATP</scp> synthase dimers and Câ€ring conformation. EMBO Reports, 2017, 18, 1077-1089.	2.0	163
63	Mitochondrial calcium homeostasis as potential target for mitochondrial medicine. Mitochondrion, 2012, 12, 77-85.	1.6	158
64	Accelerated Tumor Progression in Mice Lacking the ATP Receptor P2X7. Cancer Research, 2015, 75, 635-644.	0.4	157
65	A calcium signaling defect in the pathogenesis of a mitochondrial DNA inherited oxidative phosphorylation deficiency. Nature Medicine, 1999, 5, 951-954.	15.2	154
66	Syndromic parkinsonism and dementia associated with <scp><i>OPA</i></scp> <i>1</i> missense mutations. Annals of Neurology, 2015, 78, 21-38.	2.8	154
67	The mitochondrial heme exporter FLVCR1b mediates erythroid differentiation. Journal of Clinical Investigation, 2012, 122, 4569-4579.	3.9	153
68	Endoplasmic reticulum stress and alteration in calcium homeostasis are involved in cadmium-induced apoptosis. Cell Calcium, 2008, 43, 184-195.	1.1	151
69	Subcellular calcium measurements in mammalian cells using jellyfish photoprotein aequorin-based probes. Nature Protocols, 2013, 8, 2105-2118.	5.5	149
70	Use of luciferase probes to measure ATP in living cells and animals. Nature Protocols, 2017, 12, 1542-1562.	5.5	149
71	The Mitochondrial Permeability Transition Pore and Cancer: Molecular Mechanisms Involved in Cell Death. Frontiers in Oncology, 2014, 4, 302.	1.3	148
72	Mitochondrial reactive oxygen species and inflammation: Molecular mechanisms, diseases and promising therapies. International Journal of Biochemistry and Cell Biology, 2016, 81, 281-293.	1.2	147

#	Article	IF	CITATIONS
73	Various Aspects of Calcium Signaling in the Regulation of Apoptosis, Autophagy, Cell Proliferation, and Cancer. International Journal of Molecular Sciences, 2020, 21, 8323.	1.8	147
74	Calcium regulates cell death in cancer: Roles of the mitochondria and mitochondria-associated membranes (MAMs). Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 615-627.	0.5	146
75	Selective modulation of subtype III IP3R by Akt regulates ER Ca2+ release and apoptosis. Cell Death and Disease, 2012, 3, e304-e304.	2.7	145
76	Recombinant Expression of the Ca2+-sensitive Aspartate/Glutamate Carrier Increases Mitochondrial ATP Production in Agonist-stimulated Chinese Hamster Ovary Cells. Journal of Biological Chemistry, 2003, 278, 38686-38692.	1.6	138
77	Mitochondrial Ca2+-dependent NLRP3 activation exacerbates the Pseudomonas aeruginosa-driven inflammatory response in cystic fibrosis. Nature Communications, 2015, 6, 6201.	5.8	130
78	Ca2+ Fluxes and Cancer. Molecular Cell, 2020, 78, 1055-1069.	4.5	130
79	Isolation of plasma membrane–associated membranes from rat liver. Nature Protocols, 2014, 9, 312-322.	5.5	129
80	PML at Mitochondria-Associated Membranes Is Critical for the Repression of Autophagy and Cancer Development. Cell Reports, 2016, 16, 2415-2427.	2.9	127
81	Recombinant aequorin and green fluorescent protein as valuable tools in the study of cell signalling. Biochemical Journal, 2001, 355, 1-12.	1.7	125
82	Extracellular ATP Causes ROCK I-dependent Bleb Formation in P2X7-transfected HEK293 Cells. Molecular Biology of the Cell, 2003, 14, 2655-2664.	0.9	124
83	Redox Control of Protein Kinase C: Cell- and Disease-Specific Aspects. Antioxidants and Redox Signaling, 2010, 13, 1051-1085.	2.5	123
84	ER functions of oncogenes and tumor suppressors: Modulators of intracellular Ca2+ signaling. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1364-1378.	1.9	122
85	Mcl-1 involvement in mitochondrial dynamics is associated with apoptotic cell death. Molecular Biology of the Cell, 2016, 27, 20-34.	0.9	120
86	Reticulon 3–dependent ER-PM contact sites control EGFR nonclathrin endocytosis. Science, 2017, 356, 617-624.	6.0	118
87	The Coxsackievirus 2B Protein Suppresses Apoptotic Host Cell Responses by Manipulating Intracellular Ca2+ Homeostasis. Journal of Biological Chemistry, 2004, 279, 18440-18450.	1.6	116
88	Androgen receptor with elongated polyglutamine tract forms aggregates that alter axonal trafficking and mitochondrial distribution in motoneuronal processes. FASEB Journal, 2002, 16, 1418-1420.	0.2	113
89	Cancer metabolism and mitochondria: Finding novel mechanisms to fight tumours. EBioMedicine, 2020, 59, 102943.	2.7	110
90	Akt kinase reducing endoplasmic reticulum Ca2+ release protects cells from Ca2+-dependent apoptotic stimuli. Biochemical and Biophysical Research Communications, 2008, 375, 501-505.	1.0	109

#	Article	IF	CITATIONS
91	Defective autophagy is a key feature of cerebral cavernous malformations. EMBO Molecular Medicine, 2015, 7, 1403-1417.	3.3	109
92	Localization and Processing ofÂtheÂAmyloid-β Protein Precursor inÂMitochondria-Associated Membranes. Journal of Alzheimer's Disease, 2016, 55, 1549-1570.	1.2	107
93	Endoplasmic Reticulum-Mitochondria Communication Through Ca2+ Signaling: The Importance of Mitochondria-Associated Membranes (MAMs). Advances in Experimental Medicine and Biology, 2017, 997, 49-67.	0.8	107
94	The versatility of mitochondrial calcium signals: From stimulation of cell metabolism to induction of cell death. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 808-816.	0.5	106
95	KRIT1 Regulates the Homeostasis of Intracellular Reactive Oxygen Species. PLoS ONE, 2010, 5, e11786.	1.1	106
96	Germline BAP1 mutations induce a Warburg effect. Cell Death and Differentiation, 2017, 24, 1694-1704.	5.0	105
97	Emerging molecular mechanisms in chemotherapy: Ca2+ signaling at the mitochondria-associated endoplasmic reticulum membranes. Cell Death and Disease, 2018, 9, 334.	2.7	104
98	Oxidative Stress in Cardiovascular Diseases and Obesity: Role of p66Shc and Protein Kinase C. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-11.	1.9	103
99	Controlling metabolism and cell death: At the heart of mitochondrial calcium signalling. Journal of Molecular and Cellular Cardiology, 2009, 46, 781-788.	0.9	101
100	SEPN1, an endoplasmic reticulum-localized selenoprotein linked to skeletal muscle pathology, counteracts hyperoxidation by means of redox-regulating SERCA2 pump activity. Human Molecular Genetics, 2015, 24, 1843-1855.	1.4	101
101	Transglutaminase Type 2 Regulates ER-Mitochondria Contact Sites by Interacting with GRP75. Cell Reports, 2018, 25, 3573-3581.e4.	2.9	101
102	Alterations of calcium homeostasis in cancer cells. Current Opinion in Pharmacology, 2016, 29, 1-6.	1.7	99
103	Bcl-2 and Bax Exert Opposing Effects on Ca2+ Signaling, Which Do Not Depend on Their Putative Pore-forming Region. Journal of Biological Chemistry, 2004, 279, 54581-54589.	1.6	98
104	Endoplasmic reticulum, Bcl-2 and Ca2+ handling in apoptosis. Cell Calcium, 2002, 32, 413-420.	1.1	97
105	Metformin Prevents Glucose-Induced Protein Kinase C-Â2 Activation in Human Umbilical Vein Endothelial Cells Through an Antioxidant Mechanism. Diabetes, 2005, 54, 1123-1131.	0.3	97
106	Tumor necrosis factor-α impairs oligodendroglial differentiation through a mitochondria-dependent process. Cell Death and Differentiation, 2014, 21, 1198-1208.	5.0	97
107	Role of Mitochondria-Associated ER Membranes in Calcium Regulation in Cancer-Specific Settings. Neoplasia, 2018, 20, 510-523.	2.3	96
108	ER-mitochondria cross-talk is regulated by the Ca ²⁺ sensor NCS1 and is impaired in Wolfram syndrome. Science Signaling, 2018, 11, .	1.6	96

#	Article	IF	CITATIONS
109	Expression of the P2X7 Receptor Increases the Ca2+ Content of the Endoplasmic Reticulum, Activates NFATc1, and Protects from Apoptosis. Journal of Biological Chemistry, 2009, 284, 10120-10128.	1.6	95
110	Recombinant aequorin and green fluorescent protein as valuable tools in the study of cell signalling. Biochemical Journal, 2001, 355, 1.	1.7	92
111	Age-related changes in levels of p66Shc and serine 36-phosphorylated p66Shc in organs and mouse tissues. Archives of Biochemistry and Biophysics, 2009, 486, 73-80.	1.4	91
112	Mechanistic Role of mPTP in Ischemia-Reperfusion Injury. Advances in Experimental Medicine and Biology, 2017, 982, 169-189.	0.8	91
113	STAT3 localizes to the ER, acting as a gatekeeper for ER-mitochondrion Ca2+ fluxes and apoptotic responses. Cell Death and Differentiation, 2019, 26, 932-942.	5.0	89
114	The role of PML in the control of apoptotic cell fate: a new key player at ER–mitochondria sites. Cell Death and Differentiation, 2011, 18, 1450-1456.	5.0	88
115	Serca1 Truncated Proteins Unable to Pump Calcium Reduce the Endoplasmic Reticulum Calcium Concentration and Induce Apoptosis. Journal of Cell Biology, 2001, 153, 1301-1314.	2.3	87
116	Dynamics of Glucose-induced Membrane Recruitment of Protein Kinase C βII in Living Pancreatic Islet β-Cells. Journal of Biological Chemistry, 2002, 277, 37702-37710.	1.6	86
117	Human aquaporin-11 guarantees efficient transport of H2O2 across the endoplasmic reticulum membrane. Redox Biology, 2020, 28, 101326.	3.9	85
118	The mitochondrial permeability transition pore is a dispensable element for mitochondrial calcium efflux. Cell Calcium, 2014, 56, 1-13.	1.1	84
119	Intravital imaging reveals p53-dependent cancer cell death induced by phototherapy via calcium signaling. Oncotarget, 2015, 6, 1435-1445.	0.8	84
120	The prolyl-isomerase Pin1 activates the mitochondrial death program of p53. Cell Death and Differentiation, 2013, 20, 198-208.	5.0	83
121	Targeted recombinant aequorins: Tools for monitoring [Ca2+] in the various compartments of a living cell. , 1999, 46, 380-389.		81
122	Physiopathology of the Permeability Transition Pore: Molecular Mechanisms in Human Pathology. Biomolecules, 2020, 10, 998.	1.8	81
123	Long-term modulation of mitochondrial Ca2+ signals by protein kinase C isozymes. Journal of Cell Biology, 2004, 165, 223-232.	2.3	79
124	Relation Between Mitochondrial Membrane Potential and ROS Formation. Methods in Molecular Biology, 2018, 1782, 357-381.	0.4	79
125	p66Shc, oxidative stress and aging: Importing a lifespan determinant into mitochondria. Cell Cycle, 2008, 7, 304-308.	1.3	78
126	A novel Ca2+-mediated cross-talk between endoplasmic reticulum and acidic organelles: Implications for NAADP-dependent Ca2+ signalling. Cell Calcium, 2015, 57, 89-100.	1.1	78

#	Article	IF	CITATIONS
127	Chronic pro-oxidative state and mitochondrial dysfunctions are more pronounced in fibroblasts from Down syndrome foeti with congenital heart defects. Human Molecular Genetics, 2013, 22, 1218-1232.	1.4	77
128	Aktâ€mediated phosphorylation of <scp>MICU</scp> 1 regulates mitochondrial Ca ²⁺ levels and tumor growth. EMBO Journal, 2019, 38, .	3.5	77
129	The role of mitochondria-associated membranes in cellular homeostasis and diseases. International Review of Cell and Molecular Biology, 2020, 350, 119-196.	1.6	77
130	Biosensors for the Detection of Calcium and pH. Methods in Cell Biology, 2007, 80, 297-325.	0.5	75
131	Perturbed mitochondrial Ca ²⁺ signals as causes or consequences of mitophagy induction. Autophagy, 2013, 9, 1677-1686.	4.3	73
132	PRKCB/protein kinase C, beta and the mitochondrial axis as key regulators of autophagy. Autophagy, 2013, 9, 1367-1385.	4.3	70
133	Metformin restores the mitochondrial network and reverses mitochondrial dysfunction in Down syndrome cells. Human Molecular Genetics, 2017, 26, ddx016.	1.4	70
134	Mitophagy in Cardiovascular Diseases. Journal of Clinical Medicine, 2020, 9, 892.	1.0	70
135	Mitochondria-Associated Membranes (MAMs) as Hotspot Ca2+ Signaling Units. Advances in Experimental Medicine and Biology, 2012, 740, 411-437.	0.8	70
136	Silencing of mitochondrial Lon protease deeply impairs mitochondrial proteome and function in colon cancer cells. FASEB Journal, 2014, 28, 5122-5135.	0.2	69
137	Constitutive IP3 signaling underlies the sensitivity of B-cell cancers to the Bcl-2/IP3 receptor disruptor BIRD-2. Cell Death and Differentiation, 2019, 26, 531-547.	5.0	69
138	Inhibitory Interaction of the 14-3-3ϵ Protein with Isoform 4 of the Plasma Membrane Ca2+-ATPase Pump. Journal of Biological Chemistry, 2005, 280, 37195-37203.	1.6	67
139	Nanoscale particle therapies for wounds and ulcers. Nanomedicine, 2010, 5, 641-656.	1.7	66
140	Comprehensive analysis of mitochondrial permeability transition pore activity in living cells using fluorescence-imaging-based techniques. Nature Protocols, 2016, 11, 1067-1080.	5.5	66
141	Autophagy and mitophagy biomarkers are reduced in sera of patients with Alzheimer's disease and mild cognitive impairment. Scientific Reports, 2019, 9, 20009.	1.6	66
142	Oxidative stress-dependent p66Shc phosphorylation in skin fibroblasts of children with mitochondrial disorders. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 952-960.	0.5	65
143	Mitochondria in Multiple Sclerosis: Molecular Mechanisms of Pathogenesis. International Review of Cell and Molecular Biology, 2017, 328, 49-103.	1.6	65
144	Donor Age-Related Biological Properties of Human Dental Pulp Stem Cells Change in Nanostructured Scaffolds. PLoS ONE, 2012, 7, e49146.	1.1	64

#	Article	IF	CITATIONS
145	Regulation of Calcium Fluxes by GPX8, a Type-II Transmembrane Peroxidase Enriched at the Mitochondria-Associated Endoplasmic Reticulum Membrane. Antioxidants and Redox Signaling, 2017, 27, 583-595.	2.5	63
146	Mitochondrial Oxidative Stress and "Mito-Inflammation― Actors in the Diseases. Biomedicines, 2021, 9, 216.	1.4	63
147	Mitochondria, oxidative stress and nonalcoholic fatty liver disease: A complex relationship. European Journal of Clinical Investigation, 2022, 52, e13622.	1.7	63
148	Mitochondrial Function and Dysfunction in Dilated Cardiomyopathy. Frontiers in Cell and Developmental Biology, 2020, 8, 624216.	1.8	62
149	Aspirin delays mesothelioma growth by inhibiting HMGB1-mediated tumor progression. Cell Death and Disease, 2015, 6, e1786-e1786.	2.7	61
150	Mitochondrial Ca2+ Signaling in Health, Disease and Therapy. Cells, 2021, 10, 1317.	1.8	59
151	Intramitochondrial calcium regulation by the FHIT gene product sensitizes to apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12753-12758.	3.3	58
152	STAT3 can serve as a hit in the process of malignant transformation of primary cells. Cell Death and Differentiation, 2012, 19, 1390-1397.	5.0	57
153	Mutations of C19orf12, coding for a transmembrane glycine zipper containing mitochondrial protein, cause mis-localization of the protein, inability to respond to oxidative stress and increased mitochondrial Ca2+. Frontiers in Genetics, 2015, 6, 185.	1.1	57
154	Study of PTEN subcellular localization. Methods, 2015, 77-78, 92-103.	1.9	57
155	Adipose Tissue Regeneration: A State of the Art. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-12.	3.0	56
156	Metformin prevents liver tumourigenesis by attenuating fibrosis in a transgenic mouse model of hepatocellular carcinoma. Oncogene, 2019, 38, 7035-7045.	2.6	55
157	H-Ras-driven tumoral maintenance is sustained through caveolin-1-dependent alterations in calcium signaling. Oncogene, 2014, 33, 2329-2340.	2.6	54
158	Intersection of mitochondrial fission and fusion machinery with apoptotic pathways: Role of Mclâ€1. Biology of the Cell, 2016, 108, 279-293.	0.7	54
159	NRIP1/RIP140 siRNA-mediated attenuation counteracts mitochondrial dysfunction in Down syndrome. Human Molecular Genetics, 2014, 23, 4406-4419.	1.4	53
160	Asbestos induces mesothelial cell transformation via HMGB1-driven autophagy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25543-25552.	3.3	53
161	Autophagy and mitophagy elements are increased in body fluids of multiple sclerosis-affected individuals. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 439-441.	0.9	53
162	17β-Estradiol Enhances Signalling Mediated by VEGF-A-Delta-Like Ligand 4-Notch1 Axis in Human Endothelial Cells. PLoS ONE, 2013, 8, e71440.	1.1	52

#	Article	IF	CITATIONS
163	The mystery of mitochondria-ER contact sites in physiology and pathology: A cancer perspective. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165834.	1.8	51
164	In Vitro Concurrent Endothelial and Osteogenic Commitment of Adipose-Derived Stem Cells and Their Genomical Analyses Through Comparative Genomic Hybridization Array: Novel Strategies to Increase the Successful Engraftment of Tissue-Engineered Bone Grafts. Stem Cells and Development, 2012, 21, 767-777.	1.1	50
165	A Unified Nomenclature and Amino Acid Numbering for Human PTEN. Science Signaling, 2014, 7, pe15.	1.6	50
166	Peroxisomes as Novel Players in Cell Calcium Homeostasis. Journal of Biological Chemistry, 2008, 283, 15300-15308.	1.6	49
167	Regulation of Endoplasmic Reticulum–Mitochondria Ca2+ Transfer and Its Importance for Anti-Cancer Therapies. Frontiers in Oncology, 2017, 7, 180.	1.3	48
168	Gelatin–genipinâ€based biomaterials for skeletal muscle tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 2763-2777.	1.6	48
169	Involvement of the P2X7-NLRP3 axis in leukemic cell proliferation and death. Scientific Reports, 2016, 6, 26280.	1.6	47
170	A role for calcium in Bcl-2 action?. Biochimie, 2002, 84, 195-201.	1.3	46
171	Amyloid-Beta Disrupts Calcium and Redox Homeostasis in Brain Endothelial Cells. Molecular Neurobiology, 2015, 51, 610-622.	1.9	46
172	PAK6 Phosphorylates 14-3-3γ to Regulate Steady State Phosphorylation of LRRK2. Frontiers in Molecular Neuroscience, 2017, 10, 417.	1.4	46
173	Membrane-potential compensation reveals mitochondrial volume expansion during HSC commitment. Experimental Hematology, 2018, 68, 30-37.e1.	0.2	46
174	A maladaptive ER stress response triggers dysfunction in highly active muscles of mice with SELENON loss. Redox Biology, 2019, 20, 354-366.	3.9	46
175	Mitochondrial Ca2+ homeostasis in health and disease. Biological Research, 2004, 37, 653-60.	1.5	46
176	Targeting the NLRP3 Inflammasome as a New Therapeutic Option for Overcoming Cancer. Cancers, 2021, 13, 2297.	1.7	44
177	New light on mitochondrial calcium. BioFactors, 1998, 8, 243-253.	2.6	43
178	Oncogenic and oncosuppressive signal transduction at mitochondria-associated endoplasmic reticulum membranes. Molecular and Cellular Oncology, 2014, 1, e956469.	0.3	43
179	Mitochondria-associated membranes (MAMs) and pathologies. Cell Death and Disease, 2018, 9, 413.	2.7	43
180	An expanded palette of improved SPLICS reporters detects multiple organelle contacts in vitro and in vivo. Nature Communications, 2020, 11, 6069.	5.8	43

#	Article	IF	CITATIONS
181	Different Roles of Mitochondria in Cell Death and Inflammation: Focusing on Mitochondrial Quality Control in Ischemic Stroke and Reperfusion. Biomedicines, 2021, 9, 169.	1.4	43
182	Chapter 5: Targeting GFP to Organelles. Methods in Cell Biology, 1998, 58, 75-85.	0.5	42
183	Mitochondria associated membranes (MAMs) as critical hubs for apoptosis. Communicative and Integrative Biology, 2011, 4, 334-335.	0.6	42
184	Mitochondrial redox signalling by p66Shc mediates ALS-like disease through Rac1 inactivation. Human Molecular Genetics, 2011, 20, 4196-4208.	1.4	41
185	The TDH–GCN5L1–Fbxo15–KBP axis limits mitochondrial biogenesis in mouse embryonic stemÂcells. Nature Cell Biology, 2017, 19, 341-351.	4.6	41
186	Discovery of Novel 1,3,8-Triazaspiro[4.5]decane Derivatives That Target the c Subunit of F ₁ /F _O -Adenosine Triphosphate (ATP) Synthase for the Treatment of Reperfusion Damage in Myocardial Infarction. Journal of Medicinal Chemistry, 2018, 61, 7131-7143.	2.9	41
187	LonP1 Differently Modulates Mitochondrial Function and Bioenergetics of Primary Versus Metastatic Colon Cancer Cells. Frontiers in Oncology, 2018, 8, 254.	1.3	41
188	Pharmacological Profile of Nociceptin/Orphanin FQ Receptors Interacting with G-Proteins and β-Arrestins 2. PLoS ONE, 2015, 10, e0132865.	1.1	40
189	Pharmacoâ€toxicological effects of the novel thirdâ€generation fluorinate synthetic cannabinoids, <scp>5Fâ€ADBINACA</scp> , <scp>ABâ€FUBINACA</scp> , and <scp>STSâ€135</scp> in mice. In vitro and in vivo studies. Human Psychopharmacology, 2017, 32, e2601.	0.7	40
190	Antipsychotic drugs counteract autophagy and mitophagy in multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	40
191	Mitophagy and Mitochondrial Balance. Methods in Molecular Biology, 2015, 1241, 181-194.	0.4	40
192	Pharmacological modulation of mitochondrial calcium uniporter controls lung inflammation in cystic fibrosis. Science Advances, 2020, 6, eaax9093.	4.7	39
193	Endoplasmic reticulum-mitochondria Ca2+ crosstalk in the control of the tumor cell fate. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 858-864.	1.9	38
194	TFEB-mediated increase in peripheral lysosomes regulates store-operated calcium entry. Scientific Reports, 2017, 7, 40797.	1.6	37
195	Intracellular readthrough of nonsense mutations by aminoglycosides in coagulation factor VII. Journal of Thrombosis and Haemostasis, 2006, 4, 1308-1314.	1.9	35
196	STAT3 Activities and Energy Metabolism: Dangerous Liaisons. Cancers, 2014, 6, 1579-1596.	1.7	35
197	Alterations in Ca2+ Signalling via ER-Mitochondria Contact Site Remodelling in Cancer. Advances in Experimental Medicine and Biology, 2017, 997, 225-254.	0.8	35
198	Dopamine D2 receptor-mediated neuroprotection in a G2019S Lrrk2 genetic model of Parkinson's disease. Cell Death and Disease, 2018, 9, 204.	2.7	35

#	Article	IF	CITATIONS
199	Interorganellar calcium signaling in the regulation of cell metabolism: A cancer perspective. Seminars in Cell and Developmental Biology, 2020, 98, 167-180.	2.3	35
200	Phospholipase C-β3 Is a Key Modulator of IL-8 Expression in Cystic Fibrosis Bronchial Epithelial Cells. Journal of Immunology, 2011, 186, 4946-4958.	0.4	34
201	Transient Receptor Potential Ankyrin 1 Channels Modulate Inflammatory Response in Respiratory Cells from Patients with Cystic Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2016, 55, 645-656.	1.4	34
202	Mitochondrial calcium uniporter complex modulation in cancerogenesis. Cell Cycle, 2019, 18, 1068-1083.	1.3	34
203	Cardiac mitochondrial dysfunction during hyperglycemia—The role of oxidative stress and p66Shc signaling. International Journal of Biochemistry and Cell Biology, 2013, 45, 114-122.	1.2	33
204	Calcium mishandling in absence of primary mitochondrial dysfunction drives cellular pathology in Wolfram Syndrome. Scientific Reports, 2020, 10, 4785.	1.6	33
205	β-Sitosterol Reduces the Expression of Chemotactic Cytokine Genes in Cystic Fibrosis Bronchial Epithelial Cells. Frontiers in Pharmacology, 2017, 8, 236.	1.6	32
206	A New Current for the Mitochondrial Permeability Transition. Trends in Biochemical Sciences, 2019, 44, 559-561.	3.7	32
207	The Golgi Ca2+-ATPase KlPmr1p Function Is Required for Oxidative Stress Response by Controlling the Expression of the Heat-Shock Element HSP60 in Kluyveromyces lactis. Molecular Biology of the Cell, 2005, 16, 4636-4647.	0.9	31
208	Mitochondrial Ca2+ Remodeling is a Prime Factor in Oncogenic Behavior. Frontiers in Oncology, 2015, 5, 143.	1.3	31
209	Consensus report of the 8 and 9th Weinman Symposia on Gene x Environment Interaction in carcinogenesis: novel opportunities for precision medicine. Cell Death and Differentiation, 2018, 25, 1885-1904.	5.0	31
210	Correlation between auto/mitophagic processes and magnetic resonance imaging activity in multiple sclerosis patients. Journal of Neuroinflammation, 2019, 16, 131.	3.1	31
211	The cytoplasmic C-terminus of polycystin-1 increases cell proliferation in kidney epithelial cells through serum-activated and Ca2+-dependent pathway(s). Experimental Cell Research, 2005, 304, 391-406.	1.2	30
212	Hyaluronan and Fibrin Biomaterial as Scaffolds for Neuronal Differentiation of Adult Stem Cells Derived from Adipose Tissue and Skin. International Journal of Molecular Sciences, 2011, 12, 6749-6764.	1.8	30
213	Relevance of Autophagy and Mitophagy Dynamics and Markers in Neurodegenerative Diseases. Biomedicines, 2021, 9, 149.	1.4	30
214	Mitochondria: Insights into Crucial Features to Overcome Cancer Chemoresistance. International Journal of Molecular Sciences, 2021, 22, 4770.	1.8	30
215	Reversal of the glycolytic phenotype of primary effusion lymphoma cells by combined targeting of cellular metabolism and PI3K/Akt/ mTOR signaling. Oncotarget, 2016, 7, 5521-5537.	0.8	30
216	Targeting of reporter molecules to mitochondria to measure calcium, ATP, and pH. Methods in Cell Biology, 2001, 65, 353-380.	0.5	29

#	Article	IF	CITATIONS
217	Nanotechnology to drive stem cell commitment. Nanomedicine, 2013, 8, 469-486.	1.7	29
218	Defective endoplasmic reticulum-mitochondria contacts and bioenergetics in SEPN1-related myopathy. Cell Death and Differentiation, 2021, 28, 123-138.	5.0	29
219	Mitochondrial P2X7 Receptor Localization Modulates Energy Metabolism Enhancing Physical Performance. Function, 2021, 2, zqab005.	1.1	29
220	The heme synthesis-export system regulates the tricarboxylic acid cycle flux and oxidative phosphorylation. Cell Reports, 2021, 35, 109252.	2.9	29
221	Cell death as a result of calcium signaling modulation: A cancer-centric prospective. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119061.	1.9	29
222	Activation of the sigma-1 receptor chaperone alleviates symptoms of Wolfram syndrome in preclinical models. Science Translational Medicine, 2022, 14, eabh3763.	5.8	29
223	Recombinant aequorin as tool for monitoring calcium concentration in subcellular compartments. Methods in Enzymology, 2000, 327, 440-456.	0.4	28
224	The interplay between p66Shc, reactive oxygen species and cancer cell metabolism. European Journal of Clinical Investigation, 2015, 45, 25-31.	1.7	28
225	IP3 receptor blockade restores autophagy and mitochondrial function in skeletal muscle fibers of dystrophic mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 3685-3695.	1.8	28
226	The p13 protein of human T cell leukemia virus type 1 (HTLV-1) modulates mitochondrial membrane potential and calcium uptake. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 945-951.	0.5	27
227	Methods to Monitor and Compare Mitochondrial and Glycolytic ATP Production. Methods in Enzymology, 2014, 542, 313-332.	0.4	27
228	Osteogenic differentiation of human MSCs: Specific occupancy of the mitochondrial DNA by NFATc1 transcription factor. International Journal of Biochemistry and Cell Biology, 2015, 64, 212-219.	1.2	27
229	MicroRNA501â€5p induces p53 proteasome degradation through the activation of the mTOR/MDM2 pathway in ADPKD cells. Journal of Cellular Physiology, 2018, 233, 6911-6924.	2.0	27
230	The endoplasmic reticulum mitochondrial calcium cross talk is downregulated in malignant pleural mesothelioma cells and plays a critical role in apoptosis inhibition. Oncotarget, 2015, 6, 23427-23444.	0.8	27
231	Novel role for polycystinâ€1 in modulating cell proliferation through calcium oscillations in kidney cells. Cell Proliferation, 2008, 41, 554-573.	2.4	26
232	Fo ATP synthase C subunit serum levels in patients with ST-segment Elevation Myocardial Infarction: Preliminary findings. International Journal of Cardiology, 2016, 221, 993-997.	0.8	26
233	Chondrocyte protein with a poly-proline region (CHPPR) is a novel mitochondrial protein and promotes mitochondrial fission. Journal of Cellular Physiology, 2004, 201, 470-482.	2.0	25
234	Overexpression of adenine nucleotide translocase reduces Ca2+ signal transmission between the ER and mitochondria. Biochemical and Biophysical Research Communications, 2006, 348, 393-399.	1.0	25

#	Article	IF	CITATIONS
235	Weight gain related to treatment with atypical antipsychotics is due to activation of PKC-β. Pharmacogenomics Journal, 2010, 10, 408-417.	0.9	25
236	Mitochondria-Associated Endoplasmic Reticulum Membranes in Insulin Signaling. Diabetes, 2014, 63, 3163-3165.	0.3	25
237	Assessing Extracellular ATP as Danger Signal In Vivo: The pmeLuc System. Methods in Molecular Biology, 2016, 1417, 115-129.	0.4	25
238	Cellular processes underlying cerebral cavernous malformations: Autophagy as another point of view. Autophagy, 2016, 12, 424-425.	4.3	25
239	Role of Cystic Fibrosis Bronchial Epithelium in Neutrophil Chemotaxis. Frontiers in Immunology, 2020, 11, 1438.	2.2	25
240	Control of host mitochondria by bacterial pathogens. Trends in Microbiology, 2022, 30, 452-465.	3.5	25
241	Expression of polycystin-1 C-terminal fragment enhances the ATP-induced Ca2+ release in human kidney cells. Biochemical and Biophysical Research Communications, 2003, 301, 657-664.	1.0	24
242	Beyond multiple mechanisms and a unique drug: Defective autophagy as pivotal player in cerebral cavernous malformation pathogenesis and implications for targeted therapies. Rare Diseases (Austin,) Tj ETQq(000unggBT	Ov er łock 101
243	Mitochondrial functionality and metabolism in T cells from progressive multiple sclerosis patients. European Journal of Immunology, 2019, 49, 2204-2221.	1.6	24
244	KRIT1 Deficiency Promotes Aortic Endothelial Dysfunction. International Journal of Molecular Sciences, 2019, 20, 4930.	1.8	24
245	Impairment of mitophagy and autophagy accompanies calcific aortic valve stenosis favouring cell death and the severity of disease. Cardiovascular Research, 2022, 118, 2548-2559.	1.8	24
246	Differential recruitment of PKC isoforms in HeLa cells during redox stress. Cell Stress and Chaperones, 2007, 12, 291.	1.2	24
247	Down-regulation of the mitochondrial aspartate-glutamate carrier isoform 1 AGC1 inhibits proliferation and N-acetylaspartate synthesis in Neuro2A cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1422-1435.	1.8	22
248	The induction of AMPK-dependent autophagy leads to P53 degradation and affects cell growth and migration in kidney cancer cells. Experimental Cell Research, 2020, 395, 112190.	1.2	22
249	Hyaluronic Acid Induces Activation of the κ-Opioid Receptor. PLoS ONE, 2013, 8, e55510.	1.1	22
250	Calcium dysregulation in heart diseases: Targeting calcium channels to achieve a correct calcium homeostasis. Pharmacological Research, 2022, 177, 106119.	3.1	22
251	The Interplay of Hypoxia Signaling on Mitochondrial Dysfunction and Inflammation in Cardiovascular Diseases and Cancer: From Molecular Mechanisms to Therapeutic Approaches. Biology, 2022, 11, 300.	1.3	22
252	Sphingosine 1-phosphate receptors modulate intracellular Ca2+ homeostasis. Biochemical and Biophysical Research Communications, 2007, 353, 268-274.	1.0	21

#	Article	IF	CITATIONS
253	High IGFBP2 Expression Correlates with Tumor Severity in Pediatric Rhabdomyosarcoma. American Journal of Pathology, 2011, 179, 2611-2624.	1.9	21
254	Clinical benefit of drugs targeting mitochondrial function as an adjunct to reperfusion in ST-segment elevation myocardial infarction: A meta-analysis of randomized clinical trials. International Journal of Cardiology, 2017, 244, 59-66.	0.8	21
255	Citrate Mediates Crosstalk between Mitochondria and the Nucleus to Promote Human Mesenchymal Stem Cell In Vitro Osteogenesis. Cells, 2020, 9, 1034.	1.8	21
256	A naturally occurring mutation in ATP synthase subunit c is associated with increased damage following hypoxia/reoxygenation in STEMI patients. Cell Reports, 2021, 35, 108983.	2.9	21
257	Endoplasmic Reticulum/Mitochondria Calcium Cross-Talk. Novartis Foundation Symposium, 0, , 122-139.	1.2	21
258	Understanding the Role of Autophagy in Cancer Formation and Progression Is a Real Opportunity to Treat and Cure Human Cancers. Cancers, 2021, 13, 5622.	1.7	21
259	Plasma membrane associated membranes (PAM) from Jurkat cells contain STIM1 protein. International Journal of Biochemistry and Cell Biology, 2009, 41, 2440-2449.	1.2	20
260	Mitochondrial calcium uniporter, MiRNA and cancer. Communicative and Integrative Biology, 2013, 6, e23818.	0.6	20
261	Novel frontiers in calcium signaling: A possible target for chemotherapy. Pharmacological Research, 2015, 99, 82-85.	3.1	20
262	NS5A Promotes Constitutive Degradation of IP3R3 to Counteract Apoptosis Induced by Hepatitis C Virus. Cell Reports, 2018, 25, 833-840.e3.	2.9	20
263	The Dichotomous Role of Inflammation in the CNS: A Mitochondrial Point of View. Biomolecules, 2020, 10, 1437.	1.8	20
264	Aortic Valve Stenosis and Mitochondrial Dysfunctions: Clinical and Molecular Perspectives. International Journal of Molecular Sciences, 2020, 21, 4899.	1.8	20
265	Molecular machinery and signaling events in apoptosis. Drug Development Research, 2001, 52, 558-570.	1.4	19
266	p66Shc Aging Protein in Control of Fibroblasts Cell Fate. International Journal of Molecular Sciences, 2011, 12, 5373-5389.	1.8	19
267	Novel insights into the mitochondrial permeability transition. Cell Cycle, 2014, 13, 2666-2670.	1.3	19
268	Alterations in Mitochondrial and Endoplasmic Reticulum Signaling by p53 Mutants. Frontiers in Oncology, 2016, 6, 42.	1.3	19
269	FTY720 inhibits mesothelioma growth in vitro and in a syngeneic mouse model. Journal of Translational Medicine, 2017, 15, 58.	1.8	19
270	Characterization of Dermal Stem Cells of Diabetic Patients. Cells, 2019, 8, 729.	1.8	19

#	Article	IF	CITATIONS
271	High mitochondrial Ca ²⁺ content increases cancer cell proliferation upon inhibition of mitochondrial permeability transition pore (mPTP). Cell Cycle, 2019, 18, 914-916.	1.3	19
272	Disrupted ATP synthase activity and mitochondrial hyperpolarisation-dependent oxidative stress is associated with p66Shc phosphorylation in fibroblasts of NARP patients. International Journal of Biochemistry and Cell Biology, 2013, 45, 141-150.	1.2	18
273	The effectiveness of Robot-Assisted Gait Training versus conventional therapy on mobility in severely disabled progressive MultiplE sclerosis patients (RAGTIME): study protocol for a randomized controlled trial. Trials, 2017, 18, 88.	0.7	18
274	Methods to Assess Mitochondrial Morphology in Mammalian Cells Mounting Autophagic or Mitophagic Responses. Methods in Enzymology, 2017, 588, 171-186.	0.4	18
275	Mitochondrial Stress Responses and "Mito-Inflammation―in Cystic Fibrosis. Frontiers in Pharmacology, 2020, 11, 581114.	1.6	18
276	Impaired mitochondrial quality control in Rett Syndrome. Archives of Biochemistry and Biophysics, 2021, 700, 108790.	1.4	18
277	Heart rate reduction with ivabradine in the early phase of atherosclerosis is protective in the endothelium of ApoE-deficient mice. Journal of Physiology and Pharmacology, 2018, 69, 35-52.	1.1	18
278	The "mitochondrial stress responses― the "Dr. Jekyll and Mr. Hyde―of neuronal disorders. Neural Regeneration Research, 2022, 17, 2563.	1.6	18
279	Functional and structural alterations in the endoplasmic reticulum and mitochondria during apoptosis triggered by C2-ceramide and CD95/APO-1/FAS receptor stimulation. Biochemical and Biophysical Research Communications, 2010, 391, 575-581.	1.0	17
280	Pioglitazone Improves Mitochondrial Organization and Bioenergetics in Down Syndrome Cells. Frontiers in Genetics, 2019, 10, 606.	1.1	17
281	Selective Augmentation of Stem Cell Populations in Structural Fat Grafts for Maxillofacial Surgery. PLoS ONE, 2014, 9, e110796.	1.1	16
282	Differential expression of microRNA501â€5p affects the aggressiveness of clear cell renal carcinoma. FEBS Open Bio, 2014, 4, 952-965.	1.0	16
283	Double inhibition of cAMP and mTOR signalling may potentiate the reduction of cell growth in ADPKD cells. Clinical and Experimental Nephrology, 2017, 21, 203-211.	0.7	16
284	PLCγ1 suppression promotes the adaptation of KRAS-mutant lung adenocarcinomas to hypoxia. Nature Cell Biology, 2020, 22, 1382-1395.	4.6	16
285	Update on Calcium Signaling in Cystic Fibrosis Lung Disease. Frontiers in Pharmacology, 2021, 12, 581645.	1.6	16
286	Mitochondrial Tolerance to Drugs and Toxic Agents in Ageing and Disease. Current Drug Targets, 2011, 12, 827-849.	1.0	16
287	Endoplasmic reticulum/mitochondria calcium cross-talk. Novartis Foundation Symposium, 2007, 287, 122-31; discussion 131-9.	1.2	16
288	Molecular Mechanisms of Autophagy in Cancer Development, Progression, and Therapy. Biomedicines, 2022, 10, 1596.	1.4	16

#	Article	IF	CITATIONS
289	Chemoresistance and Cancer-Related Inflammation: Two Hallmarks of Cancer Connected by an Atypical Link, PKCζ. Frontiers in Oncology, 2013, 3, 232.	1.3	15
290	Altering mitochondrial properties. Nature Chemical Biology, 2014, 10, 89-90.	3.9	15
291	Efficacy of magnesium chloride in the treatment of <scp>H</scp> ailey– <scp>H</scp> ailey disease: from serendipity to evidence of its effect on intracellular <scp>C</scp> a ²⁺ homeostasis. International Journal of Dermatology, 2015, 54, 543-548.	0.5	15
292	Protein Kinase C β: a New Target Therapy to Prevent the Long-Term Atypical Antipsychotic-Induced Weight Gain. Neuropsychopharmacology, 2017, 42, 1491-1501.	2.8	15
293	PLCB3 Loss of Function Reduces <i>Pseudomonas aeruginosa</i> –Dependent IL-8 Release in Cystic Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 428-436.	1.4	15
294	Mitochondrial Control of Genomic Instability in Cancer. Cancers, 2021, 13, 1914.	1.7	15
295	Beyond Abscopal Effect: A Meta-Analysis of Immune Checkpoint Inhibitors and Radiotherapy in Advanced Non-Small Cell Lung Cancer. Cancers, 2021, 13, 2352.	1.7	15
296	Mitochondrial Bioenergetics and Dynamism in the Failing Heart. Life, 2021, 11, 436.	1.1	15
297	TFG binds LC3C to regulate ULK1 localization and autophagosome formation. EMBO Journal, 2021, 40, e103563.	3.5	15
298	An Updated Understanding of the Role of YAP in Driving Oncogenic Responses. Cancers, 2021, 13, 3100.	1.7	15
299	Adding a "Notch―to Cardiovascular Disease Therapeutics: A MicroRNA-Based Approach. Frontiers in Cell and Developmental Biology, 2021, 9, 695114.	1.8	15
300	Epigenetic Regulation: A Link between Inflammation and Carcinogenesis. Cancers, 2022, 14, 1221.	1.7	15
301	NF-κB activation is required for apoptosis in fibrocystin/polyductin-depleted kidney epithelial cells. Apoptosis: an International Journal on Programmed Cell Death, 2010, 15, 94-104.	2.2	14
302	Vav1 is a crucial molecule in monocytic/macrophagic differentiation of myeloid leukemia-derived cells. Cell and Tissue Research, 2011, 345, 163-175.	1.5	14
303	Berberine slows cell growth in autosomal dominant polycystic kidney disease cells. Biochemical and Biophysical Research Communications, 2013, 441, 668-674.	1.0	14
304	Fluorescent Light Energy (FLE) Acts on Mitochondrial Physiology Improving Wound Healing. Journal of Clinical Medicine, 2020, 9, 559.	1.0	14
305	From Bed to Bench and Back: TNF-α, IL-23/IL-17A, and JAK-Dependent Inflammation in the Pathogenesis of Psoriatic Synovitis. Frontiers in Pharmacology, 2021, 12, 672515.	1.6	14
306	BAP1 forms a trimer with HMGB1 and HDAC1 that modulates gene × environment interaction with asbestos. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14

#	Article	IF	CITATIONS
307	Polycystin-1 promotes PKCα-mediated NF-κB activation in kidney cells. Biochemical and Biophysical Research Communications, 2006, 350, 257-262.	1.0	13
308	A family with paroxysmal nonkinesigenic dyskinesias (PNKD): Evidence of mitochondrial dysfunction. European Journal of Paediatric Neurology, 2015, 19, 64-68.	0.7	13
309	Data on administration of cyclosporine, nicorandil, metoprolol on reperfusion related outcomes in ST-segment Elevation Myocardial Infarction treated with percutaneous coronary intervention. Data in Brief, 2017, 14, 197-205.	0.5	13
310	Measurement of ATP concentrations in mitochondria of living cells using luminescence and fluorescence approaches. Methods in Cell Biology, 2020, 155, 199-219.	0.5	13
311	Mitochondria as the decision makers for cancer cell fate: from signaling pathways to therapeutic strategies. Cell Calcium, 2020, 92, 102308.	1.1	13
312	Cancer-Related Increases and Decreases in Calcium Signaling at the Endoplasmic Reticulum-Mitochondria Interface (MAMs). Reviews of Physiology, Biochemistry and Pharmacology, 2020, , 153-193.	0.9	13
313	Calcium flux control by Pacs1â€Wdr37 promotes lymphocyte quiescence and lymphoproliferative diseases. EMBO Journal, 2021, 40, e104888.	3.5	13
314	Extracellular ATP is increased by release of ATP-loaded microparticles triggered by nutrient deprivation. Theranostics, 2022, 12, 859-874.	4.6	13
315	Transglutaminase 2 Contributes to Apoptosis Induction in Jurkat T Cells by Modulating Ca2+ Homeostasis via Cross-Linking RAP1CDS1. PLoS ONE, 2013, 8, e81516.	1.1	12
316	A novel chimeric aequorin fused with caveolin-1 reveals a sphingosine kinase 1-regulated Ca2+ microdomain in the caveolar compartment. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2173-2182.	1.9	12
317	Rehabilitation Improves Mitochondrial Energetics in Progressive Multiple Sclerosis: The Significant Role of Robot-Assisted Gait Training and of the Personalized Intensity. Diagnostics, 2020, 10, 834.	1.3	12
318	Calcium levels in the Golgi complex regulate clustering and apical sorting of GPI-APs in polarized epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	12
319	The selective inhibition of nuclear PKCζ restores the effectiveness of chemotherapeutic agents in chemoresistant cells. Cell Cycle, 2012, 11, 1040-1048.	1.3	11
320	Inside the tumor: p53 modulates calcium homeostasis. Cell Cycle, 2015, 14, 933-934.	1.3	11
321	Vav1 is necessary for PU .1 mediated upmodulation of miRâ€29b in acute myeloid leukaemiaâ€derived cells. Journal of Cellular and Molecular Medicine, 2018, 22, 3149-3158.	1.6	11
322	Translational readthrough of <i>GLA</i> nonsense mutations suggests dominant-negative effects exerted by the interaction of wild-type and missense variants. RNA Biology, 2020, 17, 254-263.	1.5	11
323	Deficiency of Mitochondrial Aspartate-Glutamate Carrier 1 Leads to Oligodendrocyte Precursor Cell Proliferation Defects Both In Vitro and In Vivo. International Journal of Molecular Sciences, 2019, 20, 4486.	1.8	10
324	Detection of diseaseâ€causing mutations in prostate cancer by NGS sequencing. Cell Biology International, 2022, 46, 1047-1061.	1.4	10

#	Article	IF	CITATIONS
325	Overview of CF lung pathophysiology. Current Opinion in Pharmacology, 2022, 64, 102214.	1.7	10
326	Aequorin chimeras as valuable tool in the measurement of Ca2+ concentration during cadmium injury. Toxicology, 2005, 208, 389-398.	2.0	9
327	Translocation of signalling proteins to the plasma membrane revealed by a new bioluminescent procedure. BMC Cell Biology, 2011, 12, 27.	3.0	9
328	Mitochondrial control of hematopoietic stem cell balance and hematopoiesis. Frontiers in Biology, 2015, 10, 117-124.	0.7	9
329	Other bricks for the correct construction of the mitochondrial permeability transition pore complex. Cell Death and Disease, 2017, 8, e2698-e2698.	2.7	9
330	Methods to Monitor Mitophagy and Mitochondrial Quality: Implications in Cancer, Neurodegeneration, and Cardiovascular Diseases. Methods in Molecular Biology, 2021, 2310, 113-159.	0.4	9
331	Mitochondrial calcium homeostasis in hematopoietic stem cell: Molecular regulation of quiescence, function, and differentiation. International Review of Cell and Molecular Biology, 2021, 362, 111-140.	1.6	8
332	Shedding light on molecular mechanisms and identity of mPTP. Mitochondrion, 2015, 21, 11.	1.6	7
333	Intracellular Evaluation of ER Targeting Elucidates a Mild Form of Inherited Coagulation Deficiency. Molecular Medicine, 2006, 12, 137-142.	1.9	6
334	Editorial: Inter-Organelle Calcium Communication in Cancer. Frontiers in Oncology, 2018, 8, 14.	1.3	6
335	Susceptibility to cellular stress in PS1 mutant N2a cells is associated with mitochondrial defects and altered calcium homeostasis. Scientific Reports, 2020, 10, 6455.	1.6	6
336	Methods to isolate adipose tissue-derived stem cells. Methods in Cell Biology, 2022, , 215-228.	0.5	6
337	Identification of small-molecule urea derivatives as PTPC modulators targeting the c subunit of F1/Fo-ATP synthase. Bioorganic and Medicinal Chemistry Letters, 2022, 72, 128822.	1.0	5
338	Inflammatory Microenvironment in Early Non-Small Cell Lung Cancer: Exploring the Predictive Value of Radiomics. Cancers, 2022, 14, 3335.	1.7	5
339	Mitochondria in the line of fire. Cell Death and Differentiation, 2022, 29, 1301-1303.	5.0	5
340	PKC-β activation and pharmacologically induced weight gain during antipsychotic treatment. Pharmacogenomics, 2011, 12, 453-455.	0.6	4
341	Mitochondrial DNA keeps you young. Cell Death and Disease, 2018, 9, 992.	2.7	4
342	Increase of Parkin and ATG5 plasmatic levels following perinatal hypoxic-ischemic encephalopathy. Scientific Reports, 2022, 12, 7795.	1.6	4

#	Article	IF	CITATIONS
343	The Mitochondrial Permeability Transition Pore. , 2018, , 47-73.		3
344	Concise synthesis and biological evaluation of 2-Aryl-3-Anilinobenzo[b]thiophene derivatives as potent apoptosis-inducing agents. Bioorganic Chemistry, 2021, 112, 104919.	2.0	3
345	Metformin Induces Apoptosis and Inhibits Notch1 in Malignant Pleural Mesothelioma Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 534499.	1.8	3
346	Some Insights into the Regulation of Cardiac Physiology and Pathology by the Hippo Pathway. Biomedicines, 2022, 10, 726.	1.4	3
347	Mitochondria, calcium signaling and cell death by apoptosis and autophagy. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 4.	0.5	2
348	Guanosine diphosphate exerts a lower effect on superoxide release from mitochondrial matrix in the brains of uncoupling protein-2 knockout mice: New evidence for a putative novel function of uncoupling proteins as superoxide anion transporters. Biochemical and Biophysical Research Communications, 2012, 428, 234-238.	1.0	2
349	Efficacy of magnesium chloride in the treatment of Hailey–Hailey disease: some further considerations. International Journal of Dermatology, 2016, 55, e170-1.	0.5	2
350	A mitochondrial drug to treat AML. Blood, 2017, 129, 2597-2599.	0.6	2
351	Recovering Mitochondrial Function in Patients' Fibroblasts. , 2018, , 359-378.		2
352	Methods to Study PTEN in Mitochondria and Endoplasmic Reticulum. Methods in Molecular Biology, 2016, 1388, 187-212.	0.4	2
353	Targeting, Expressing and Calibrating Recombinant Aequorin. , 1999, , 263-283.		2
354	Similarities between fibroblasts and cardiomyocytes in the study of the permeability transition pore. European Journal of Clinical Investigation, 2022, 52, e13764.	1.7	2
355	Molecular Characterization of the Dominant-Negative Role of Cancer-Associated PTEN: Sometimes, Null is Better. Frontiers in Oncology, 2014, 4, 276.	1.3	1
356	MitopatHs: A new logically-framed tool for visualizing multiple mitochondrial pathways. IScience, 2021, 24, 102324.	1.9	1
357	Modulation of Calcium Homeostasis by the Endoplasmic Reticulum in Health and Disease. Molecular Biology Intelligence Unit, 2003, , 105-125.	0.2	1
358	Ca2+ Measurements in Mitochondria. , 2001, , 187-211.		1
359	The RED light is on! New tools for monitoring Ca2+ dynamics in the endoplasmic reticulum and mitochondria. Biochemical Journal, 2014, 464, e5-e6.	1.7	0
360	Editorial overview: Cancer. Current Opinion in Pharmacology, 2016, 29, v-vii.	1.7	0

#	Article	IF	CITATIONS
361	NEW INSIGHTS INTO CELLULAR FUNCTIONS. Neuromuscular Disorders, 2018, 28, S88.	0.3	0
362	Krit1 loss-of-function increases TNF-α -induced apoptosis by inhibiting Notch1 in endothelial cells. Journal of Molecular and Cellular Cardiology, 2018, 120, 48.	0.9	0
363	Glyceryl Tristearate-Based Lipid Microparticles Loaded with the Tattoo Colorant, Acid Red 87: Colorant Retention Capacity in Excised Porcine Skin. Skin Pharmacology and Physiology, 2020, 33, 1-8.	1.1	0
364	Ras, TrkB, and ShcA Protein Expression Patterns in Pediatric Brain Tumors. Journal of Clinical Medicine, 2021, 10, 2219.	1.0	0
365	Measuring Ca2+ in the Nucleoplasm of Intact Cells. , 2001, , 105-130.		0
366	Mitochondria in Cell Life and Death. , 2007, , 145-158.		0
367	Mitochondrial Heme Export Through FLVCR1b Controls Erythroid Differentiation Blood, 2012, 120, 2090-2090.	0.6	0
368	Abstract 5519: BAP1 modulates gene-environment interaction in carcinogenesis. , 2018, , .		0
369	Detection of p62/SQSTM1 Aggregates in Cellular Models of CCM Disease by Immunofluorescence. Methods in Molecular Biology, 2020, 2152, 417-426.	0.4	0
370	Amplitude-integrated EEG recorded at 32 weeks postconceptional age. Correlation with MRI at term. Journal of Perinatology, 2022, , .	0.9	0
371	Editorial - A tailored approach in geriatric oncology: turning a problem into an opportunity for the elderly. European Review for Medical and Pharmacological Sciences, 2021, 25, 6831-6833.	0.5	0
372	The LRRC8C-STING-p53 axis in T cells: A Ca2+ affair. Cell Calcium, 2022, 105, 102596.	1.1	0