Byung-Soo Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/100892/publications.pdf Version: 2024-02-01

		5891	13365
349	22,087	81	130
papers	citations	h-index	g-index
352	352	352	23628
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends in Biotechnology, 1998, 16, 224-230.	4.9	850
2	Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials, 2006, 27, 1399-1409.	5.7	710
3	Open pore biodegradable matrices formed with gas foaming. Journal of Biomedical Materials Research Part B, 1998, 42, 396-402.	3.0	700
4	Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nature Biotechnology, 1999, 17, 979-983.	9.4	427
5	Angiogenesis in ischemic tissue produced by spheroid grafting of human adipose-derived stromal cells. Biomaterials, 2011, 32, 2734-2747.	5.7	327
6	Synergistic Oxygen Generation and Reactive Oxygen Species Scavenging by Manganese Ferrite/Ceria Co-decorated Nanoparticles for Rheumatoid Arthritis Treatment. ACS Nano, 2019, 13, 3206-3217.	7.3	325
7	Biomaterials for tissue engineering. World Journal of Urology, 2000, 18, 2-9.	1.2	300
8	M1 Macrophage-Derived Nanovesicles Potentiate the Anticancer Efficacy of Immune Checkpoint Inhibitors. ACS Nano, 2018, 12, 8977-8993.	7.3	286
9	Genetic engineering of human stem cells for enhanced angiogenesis using biodegradable polymeric nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3317-3322.	3.3	278
10	Design of artificial extracellular matrices for tissue engineering. Progress in Polymer Science, 2011, 36, 238-268.	11.8	257
11	Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly(l-lactic-co-glycolic acid) scaffold. Biomaterials, 2007, 28, 2763-2771.	5.7	244
12	Early In Vivo Experience With Tissue-Engineered Trileaflet Heart Valves. Circulation, 2000, 102, III-22-III-29.	1.6	243
13	Optimizing seeding and culture methods to engineer smooth muscle tissue on biodegradable polymer matrices. Biotechnology and Bioengineering, 1998, 57, 46-54.	1.7	233
14	In vivo biocompatibilty and degradation behavior of elastic poly(l-lactide-co-Îμ-caprolactone) scaffolds. Biomaterials, 2004, 25, 5939-5946.	5.7	230
15	Implantation of bone marrow mononuclear cells using injectable fibrin matrix enhances neovascularization in infarcted myocardium. Biomaterials, 2005, 26, 319-326.	5.7	214
16	Small-Diameter Blood Vessels Engineered With Bone Marrow–Derived Cells. Annals of Surgery, 2005, 241, 506-515.	2.1	213
17	Mechano-active tissue engineering of vascular smooth muscle using pulsatile perfusion bioreactors and elastic PLCL scaffolds. Biomaterials, 2005, 26, 1405-1411.	5.7	203
18	Graphene Oxide Flakes as a Cellular Adhesive: Prevention of Reactive Oxygen Species Mediated Death of Implanted Cells for Cardiac Repair. ACS Nano, 2015, 9, 4987-4999.	7.3	203

#	Article	IF	CITATIONS
19	Engineering smooth muscle tissue with a predefined structure. , 1998, 41, 322-332.		196
20	Improvement of Postnatal Neovascularization by Human Embryonic Stem Cell–Derived Endothelial-Like Cell Transplantation in a Mouse Model of Hindlimb Ischemia. Circulation, 2007, 116, 2409-2419.	1.6	190
21	Engineered Smooth Muscle Tissues: Regulating Cell Phenotype with the Scaffold. Experimental Cell Research, 1999, 251, 318-328.	1.2	187
22	Dual Roles of Graphene Oxide To Attenuate Inflammation and Elicit Timely Polarization of Macrophage Phenotypes for Cardiac Repair. ACS Nano, 2018, 12, 1959-1977.	7.3	184
23	In vitro biocompatibility assessment of naturally derived and synthetic biomaterials using normal human urothelial cells. Journal of Biomedical Materials Research Part B, 2001, 55, 33-39.	3.0	180
24	Delivery of a Therapeutic Protein for Bone Regeneration from a Substrate Coated with Graphene Oxide. Small, 2013, 9, 4051-4060.	5.2	178
25	Hyaluronate–Gold Nanoparticle/Tocilizumab Complex for the Treatment of Rheumatoid Arthritis. ACS Nano, 2014, 8, 4790-4798.	7.3	178
26	Mesenchymal stem cell-derived magnetic extracellular nanovesicles for targeting and treatment of ischemic stroke. Biomaterials, 2020, 243, 119942.	5.7	176
27	Long-term and zero-order release of basic fibroblast growth factor from heparin-conjugated poly(l-lactide-co-glycolide) nanospheres and fibrin gel. Biomaterials, 2006, 27, 1598-1607.	5.7	173
28	Transplantation of Cord Blood Mesenchymal Stem Cells as Spheroids Enhances Vascularization. Tissue Engineering - Part A, 2012, 18, 2138-2147.	1.6	172
29	Control of basic fibroblast growth factor release from fibrin gel with heparin and concentrations of fibrinogen and thrombin. Journal of Controlled Release, 2005, 105, 249-259.	4.8	170
30	Long-term delivery enhances in vivo osteogenic efficacy of bone morphogenetic protein-2 compared to short-term delivery. Biochemical and Biophysical Research Communications, 2008, 369, 774-780.	1.0	170
31	Mechanical properties and degradation behaviors of hyaluronic acid hydrogels cross-linked at various cross-linking densities. Carbohydrate Polymers, 2007, 70, 251-257.	5.1	166
32	Manufacture of elastic biodegradable PLCL scaffolds for mechano-active vascular tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2004, 15, 645-660.	1.9	161
33	Morphology of Elastic Poly(l-lactide-co-ε-caprolactone) Copolymers and in Vitro and in Vivo Degradation Behavior of Their Scaffolds. Biomacromolecules, 2004, 5, 1303-1309.	2.6	161
34	pH-Responsive Assembly of Gold Nanoparticles and "Spatiotemporally Concerted―Drug Release for Synergistic Cancer Therapy. ACS Nano, 2013, 7, 3388-3402.	7.3	161
35	Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering. Journal of Biomedical Materials Research Part B, 2003, 66A, 29-37.	3.0	160
36	Hyaluronic Acidâ^'Quantum Dot Conjugates for <i>In Vivo</i> Lymphatic Vessel Imaging. ACS Nano, 2009, 3, 1389-1398.	7.3	157

#	Article	IF	CITATIONS
37	Mesenchymal Stem Cells Aggregate and Deliver Gold Nanoparticles to Tumors for Photothermal Therapy. ACS Nano, 2015, 9, 9678-9690.	7.3	155
38	Scaffolds for Engineering Smooth Muscle Under Cyclic Mechanical Strain Conditions. Journal of Biomechanical Engineering, 2000, 122, 210-215.	0.6	153
39	Regeneration of whole meniscus using meniscal cells and polymer scaffolds in a rabbit total meniscectomy model. Journal of Biomedical Materials Research - Part A, 2006, 77A, 659-671.	2.1	151
40	In vivo bone formation from human embryonic stem cell-derived osteogenic cells in poly(d,l-lactic-co-glycolic acid)/hydroxyapatite composite scaffolds. Biomaterials, 2008, 29, 1043-1053.	5.7	143
41	A poly(lactide-co-glycolide)/hydroxyapatite composite scaffold with enhanced osteoconductivity. Journal of Biomedical Materials Research - Part A, 2007, 80A, 206-215.	2.1	140
42	In Vitro Biocompatibility Evaluation Of Naturally Derived And Synthetic Biomaterials Using Normal Human Bladder Smooth Muscle Cells. Journal of Urology, 2002, 167, 1867-1871.	0.2	138
43	Dual Roles of Graphene Oxide in Chondrogenic Differentiation of Adult Stem Cells: Cellâ€Adhesion Substrate and Growth Factorâ€Đelivery Carrier. Advanced Functional Materials, 2014, 24, 6455-6464.	7.8	138
44	Enhanced Cartilage Formation via Three-Dimensional Cell Engineering of Human Adipose-Derived Stem Cells. Tissue Engineering - Part A, 2012, 18, 1949-1956.	1.6	135
45	Efficacious and Clinically Relevant Conditioned Medium of Human Adipose-derived Stem Cells for Therapeutic Angiogenesis. Molecular Therapy, 2014, 22, 862-872.	3.7	135
46	Dynamic Seeding and in Vitro Culture of Hepatocytes in a Flow Perfusion System. Tissue Engineering, 2000, 6, 39-44.	4.9	134
47	Engineering of volume-stable adipose tissues. Biomaterials, 2005, 26, 3577-3585.	5.7	134
48	Graphene‒Regulated Cardiomyogenic Differentiation Process of Mesenchymal Stem Cells by Enhancing the Expression of Extracellular Matrix Proteins and Cell Signaling Molecules. Advanced Healthcare Materials, 2014, 3, 176-181.	3.9	133
49	Therapeutic Efficacy-Potentiated and Diseased Organ-Targeting Nanovesicles Derived from Mesenchymal Stem Cells for Spinal Cord Injury Treatment. Nano Letters, 2018, 18, 4965-4975.	4.5	133
50	Zinc Oxide Nanorodâ€Based Piezoelectric Dermal Patch for Wound Healing. Advanced Functional Materials, 2017, 27, 1603497.	7.8	132
51	A poly(lactic acid)/calcium metaphosphate composite for bone tissue engineering. Biomaterials, 2005, 26, 6314-6322.	5.7	125
52	Accelerated Bonelike Apatite Growth on Porous Polymer/Ceramic Composite Scaffolds in Vitro. Tissue Engineering, 2006, 12, 2997-3006.	4.9	123
53	Iron Oxide Nanoparticle-Mediated Development of Cellular Gap Junction Crosstalk to Improve Mesenchymal Stem Cells' Therapeutic Efficacy for Myocardial Infarction. ACS Nano, 2015, 9, 2805-2819.	7.3	122
54	Effects of cardiac patches engineered with bone marrow-derived mononuclear cells and PGCL scaffolds in a rat myocardial infarction model. Biomaterials, 2007, 28, 641-649.	5.7	121

#	Article	IF	CITATIONS
55	Action potential duration restitution kinetics in human atrial fibrillation. Journal of the American College of Cardiology, 2002, 39, 1329-1336.	1.2	114
56	The effect of cyclic strain on embryonic stem cell-derived cardiomyocytes. Biomaterials, 2008, 29, 844-856.	5.7	114
57	Injectable hyaluronic acid–tyramine hydrogels for the treatment of rheumatoid arthritis. Acta Biomaterialia, 2011, 7, 666-674.	4.1	114
58	Graphene Potentiates the Myocardial Repair Efficacy of Mesenchymal Stem Cells by Stimulating the Expression of Angiogenic Growth Factors and Gap Junction Protein. Advanced Functional Materials, 2015, 25, 2590-2600.	7.8	114
59	Poly(lactic-co-glycolic acid) Microspheres as an Injectable Scaffold for Cartilage Tissue Engineering. Tissue Engineering, 2005, 11, 438-447.	4.9	111
60	Enhanced skin wound healing by a sustained release of growth factors contained in platelet-rich plasma. Experimental and Molecular Medicine, 2011, 43, 622.	3.2	111
61	Covalent conjugation of mechanically stiff graphene oxide flakes to three-dimensional collagen scaffolds for osteogenic differentiation of human mesenchymal stem cells. Carbon, 2015, 83, 162-172.	5.4	110
62	Effect of Cross-Linking Reagents for Hyaluronic Acid Hydrogel Dermal Fillers on Tissue Augmentation and Regeneration. Bioconjugate Chemistry, 2010, 21, 240-247.	1.8	109
63	Nanovesicles derived from iron oxide nanoparticles–incorporated mesenchymal stem cells for cardiac repair. Science Advances, 2020, 6, eaaz0952.	4.7	109
64	<i>In Vivo</i> Bone Formation Following Transplantation of Human Adipose–Derived Stromal Cells That Are Not Differentiated Osteogenically. Tissue Engineering - Part A, 2008, 14, 1285-1294.	1.6	108
65	Heparin-Conjugated Fibrin as an Injectable System for Sustained Delivery of Bone Morphogenetic Protein-2. Tissue Engineering - Part A, 2010, 16, 1225-1233.	1.6	107
66	Development of Technologies Aiding Large-Tissue Engineering. Biotechnology Progress, 1998, 14, 134-140.	1.3	103
67	Studies of brush border enzymes, basement membrane components, and electrophysiology of tissue-engineered neointestine. Journal of Pediatric Surgery, 1998, 33, 991-997.	0.8	100
68	Peripheral nerve regeneration using acellular nerve grafts. Journal of Biomedical Materials Research Part B, 2004, 68A, 201-209.	3.0	100
69	Enhancement of adipose tissue formation by implantation of adipogenic-differentiated preadipocytes. Biochemical and Biophysical Research Communications, 2006, 345, 588-594.	1.0	100
70	Culture of neural cells and stem cells on graphene. Tissue Engineering and Regenerative Medicine, 2013, 10, 39-46.	1.6	100
71	Efficient mRNA delivery with graphene oxide-polyethylenimine for generation of footprint-free human induced pluripotent stem cells. Journal of Controlled Release, 2016, 235, 222-235.	4.8	99
72	Shearâ€reversibly Crosslinked Alginate Hydrogels for Tissue Engineering. Macromolecular Bioscience, 2009, 9, 895-901.	2.1	98

#	Article	lF	CITATIONS
73	Therapeutic effects of human adipose stem cellâ€conditioned medium on stroke. Journal of Neuroscience Research, 2012, 90, 1794-1802.	1.3	97
74	Graphene enhances the cardiomyogenic differentiation of human embryonic stem cells. Biochemical and Biophysical Research Communications, 2014, 452, 174-180.	1.0	97
75	Injectable multifunctional microgel encapsulating outgrowth endothelial cells and growth factors for enhanced neovascularization. Journal of Controlled Release, 2014, 187, 1-13.	4.8	96
76	Stem cell recruitment and angiogenesis of neuropeptide substance P coupled with self-assembling peptide nanofiber in a mouse hind limb ischemia model. Biomaterials, 2013, 34, 1657-1668.	5.7	92
77	Apatiteâ€coated poly(lacticâ€ <i>co</i> â€glycolic acid) microspheres as an injectable scaffold for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2008, 85A, 747-756.	2.1	89
78	The behavior of neural stem cells on biodegradable synthetic polymers. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 223-239.	1.9	88
79	Comparison between heparin-conjugated fibrin and collagen sponge as bone morphogenetic protein-2 carriers for bone regeneration. Experimental and Molecular Medicine, 2012, 44, 350.	3.2	86
80	Vascular patches tissue-engineered with autologous bone marrow-derived cells and decellularized tissue matrices. Biomaterials, 2005, 26, 1915-1924.	5.7	85
81	Control of the molecular degradation of hyaluronic acid hydrogels for tissue augmentation. Journal of Biomedical Materials Research - Part A, 2008, 86A, 685-693.	2.1	85
82	Transfection of mesenchymal stem cells with the FGF-2 gene improves their survival under hypoxic conditions. Molecules and Cells, 2005, 19, 402-7.	1.0	83
83	In situ hybridization of carbon nanotubes with bacterial cellulose for three-dimensional hybrid bioscaffolds. Biomaterials, 2015, 58, 93-102.	5.7	82
84	Tissue Transglutaminase Is Essential for Integrin-Mediated Survival of Bone Marrow-Derived Mesenchymal Stem Cells. Stem Cells, 2007, 25, 1431-1438.	1.4	81
85	Articular cartilage regeneration with microfracture and hyaluronic acid. Biotechnology Letters, 2008, 30, 435-439.	1.1	81
86	Highly porous polymer matrices as a three-dimensional culture system for hepatocytes. Cell Transplantation, 1997, 6, 463-468.	1.2	78
87	Stimulation of Chondrogenic Differentiation of Mesenchymal Stem Cells. International Journal of Stem Cells, 2012, 5, 16-22.	0.8	78
88	Suspension Culture of Mammalian Cells Using Thermosensitive Microcarrier that Allows Cell Detachment without Proteolytic Enzyme Treatment. Cell Transplantation, 2010, 19, 1123-1132.	1.2	77
89	Thermally Produced Biodegradable Scaffolds for Cartilage Tissue Engineering. Macromolecular Bioscience, 2004, 4, 802-810.	2.1	76
90	Gold Nanoparticle/Graphene Oxide Hybrid Sheets Attached on Mesenchymal Stem Cells for Effective Photothermal Cancer Therapy. Chemistry of Materials, 2017, 29, 3461-3476.	3.2	76

#	Article	IF	CITATIONS
91	Combining Chondrocytes and Smooth Muscle Cells to Engineer Hybrid Soft Tissue Constructs. Tissue Engineering, 2000, 6, 297-305.	4.9	75
92	Immunomodulatory Lipocomplex Functionalized with Photosensitizer-Embedded Cancer Cell Membrane Inhibits Tumor Growth and Metastasis. Nano Letters, 2019, 19, 5185-5193.	4.5	73
93	Tâ€Cellâ€Mimicking Nanoparticles for Cancer Immunotherapy. Advanced Materials, 2020, 32, e2003368.	11.1	73
94	Porous Poly(Lactic-Co-Glycolic Acid) Microsphere as Cell Culture Substrate and Cell Transplantation Vehicle for Adipose Tissue Engineering. Tissue Engineering - Part C: Methods, 2008, 14, 25-34.	1.1	72
95	Locally Delivered Growth Factor Enhances the Angiogenic Efficacy of Adipose-Derived Stromal Cells Transplanted to Ischemic Limbs. Stem Cells, 2009, 27, 1976-1986.	1.4	72
96	Hyaline Cartilage Regeneration by Combined Therapy of Microfracture and Long-Term Bone Morphogenetic Protein-2 Delivery. Tissue Engineering - Part A, 2011, 17, 1809-1818.	1.6	71
97	Modified Magnesium Hydroxide Nanoparticles Inhibit the Inflammatory Response to Biodegradable Poly(lactide- <i>co</i> -glycolide) Implants. ACS Nano, 2018, 12, 6917-6925.	7.3	71
98	Effects of BMP-2 and vitamin D3 on the osteogenic differentiation of adipose stem cells. Biochemical and Biophysical Research Communications, 2011, 408, 126-131.	1.0	68
99	Nanocomplexâ€Mediated In Vivo Programming to Chimeric Antigen Receptorâ€M1 Macrophages for Cancer Therapy. Advanced Materials, 2021, 33, e2103258.	11.1	68
100	In vivo realâ€ŧime bioimaging of hyaluronic acid derivatives using quantum dots. Biopolymers, 2008, 89, 1144-1153.	1.2	67
101	Nanogrooved substrate promotes direct lineage reprogramming ofÂfibroblasts to functional induced dopaminergic neurons. Biomaterials, 2015, 45, 36-45.	5.7	66
102	LONG-TERM FOLLOW-UP OF TISSUE-ENGINEERED INTESTINE AFTER ANASTOMOSIS TO NATIVE SMALL BOWEL12. Transplantation, 2000, 69, 1927-1932.	0.5	66
103	Angiogenesis Facilitated by Autologous Whole Bone Marrow Stem Cell Transplantation for Buerger's Disease. Stem Cells, 2006, 24, 1194-1200.	1.4	63
104	Chitosan-g-hematin: Enzyme-mimicking polymeric catalyst for adhesive hydrogels. Acta Biomaterialia, 2014, 10, 224-233.	4.1	63
105	Nanosphere-mediated delivery of vascular endothelial growth factor gene for therapeutic angiogenesis in mouse ischemic limbs. Biomaterials, 2008, 29, 1109-1117.	5.7	62
106	Delivery of bone morphogenetic protein-2 and substance P using graphene oxide for bone regeneration. International Journal of Nanomedicine, 2014, 9 Suppl 1, 107.	3.3	62
107	InÂvivo stem cell tracking with imageable nanoparticles that bind bioorthogonal chemical receptors on the stem cell surface. Biomaterials, 2017, 139, 12-29.	5.7	62
108	In Vivo Tracking of Mesechymal Stem Cells Using Fluorescent Nanoparticles in an Osteochondral Repair Model. Molecular Therapy, 2012, 20, 1434-1442.	3.7	61

#	Article	IF	CITATIONS
109	Orthotopic bone formation by implantation of apatiteâ€coated poly(lactideâ€ <i>co</i> â€glycolide)/hydroxyapatite composite particulates and bone morphogenetic proteinâ€2. Journal of Biomedical Materials Research - Part A, 2008, 87A, 245-253.	2.1	60
110	Active Blood Vessel Formation in the Ischemic Hindlimb Mouse Model Using a Microsphere/Hydrogel Combination System. Pharmaceutical Research, 2010, 27, 767-774.	1.7	58
111	Cyclic strain inhibits switching of smooth muscle cells to an osteoblastâ€like phenotype. FASEB Journal, 2003, 17, 1-21.	0.2	57
112	Electroactive Electrospun Polyaniline/Poly[(<scp>L</scp> â€lactide) <i>â€coâ€</i> (<i>ε</i> â€caprolactone)] Fibers for Control of Neural Cell Function. Macromolecular Bioscience, 2012, 12, 402-411.	2.1	57
113	Improvement of Kidney Failure With Fetal Kidney Precursor Cell Transplantation. Transplantation, 2007, 83, 1249-1258.	0.5	55
114	Treatment of <scp>FGF</scp> â€2 on stem cells from inflamed dental pulp tissue from human deciduous teeth. Oral Diseases, 2014, 20, 191-204.	1.5	55
115	Open Macroporous Poly(lactic-co-glycolic Acid) Microspheres as an Injectable Scaffold for Cartilage Tissue Engineering. Journal of Biomaterials Science, Polymer Edition, 2009, 20, 399-409.	1.9	54
116	The Efficacy of Bone Morphogenetic Proteinâ€⊋ Depends on Its Mode of Delivery. Artificial Organs, 2010, 34, 1150-1153.	1.0	54
117	Injury-Mediated Vascular Regeneration Requires Endothelial ER71/ETV2. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 86-96.	1.1	54
118	Dual-Modal Imaging-Guided Precise Tracking of Bioorthogonally Labeled Mesenchymal Stem Cells in Mouse Brain Stroke. ACS Nano, 2019, 13, 10991-11007.	7.3	53
119	Self-Assembled Extracellular Macromolecular Matrices and Their Different Osteogenic Potential with Preosteoblasts and Rat Bone Marrow Mesenchymal Stromal Cells. Biomacromolecules, 2012, 13, 2811-2820.	2.6	52
120	Effects of Anastomosis of Tissue-Engineered Neointestine to Native Small Bowel. Journal of Surgical Research, 1999, 87, 6-13.	0.8	50
121	Early diagnosis of arthritis in mice with collagen-induced arthritis, using a fluorogenic matrix metalloproteinase 3-specific polymeric probe. Arthritis and Rheumatism, 2011, 63, 3824-3832.	6.7	50
122	Heparin-conjugated polyethylenimine for gene delivery. Journal of Controlled Release, 2008, 132, 236-242.	4.8	49
123	<i>In vitro</i> cardiomyogenic differentiation of adiposeâ€derived stromal cells using transforming growth factorâ€ <i>β</i> 1. Cell Biochemistry and Function, 2009, 27, 148-154.	1.4	49
124	Non-invasive optical imaging of cathepsin B with activatable fluorogenic nanoprobes in various metastatic models. Biomaterials, 2014, 35, 2302-2311.	5.7	49
125	REGENERATIVE SIGNALS FOR INTESTINAL EPITHELIAL ORGANOID UNITS TRANSPLANTED ON BIODEGRADABLE POLYMER SCAFFOLDS FOR TISSUE ENGINEERING OF SMALL INTESTINE1,2. Transplantation, 1999, 67, 227-233.	0.5	49
126	Engineered Adipose Tissue Formation Enhanced by Basic Fibroblast Growth Factor and a Mechanically Stable Environment. Cell Transplantation, 2007, 16, 421-434.	1.2	47

#	Article	IF	CITATIONS
127	Engineering of Human Cartilage Rods: Potential Application for Penile Prostheses. Journal of Urology, 2002, 168, 1794-1797.	0.2	46
128	Enhancement ofin vivo endothelialization of tissue-engineered vascular grafts by granulocyte colony-stimulating factor. Journal of Biomedical Materials Research - Part A, 2006, 76A, 252-263.	2.1	46
129	Enhancement of the osteogenic efficacy of osteoblast transplantation by the sustained delivery of basic fibroblast growth factor. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 79B, 353-359.	1.6	46
130	Apatite-Coated Collagen Scaffold for Bone Morphogenetic Protein-2 Delivery. Tissue Engineering - Part A, 2011, 17, 2153-2164.	1.6	46
131	Survival and function of rat hepatocytes cocultured with nonparenchymal cells or sinusoidal endothelial cells on biodegradable polymers under flow conditions. Journal of Pediatric Surgery, 2000, 35, 1287-1290.	0.8	45
132	Modulation of BMP-2-Induced Chondrogenic Versus Osteogenic Differentiation of Human Mesenchymal Stem Cells by Cell-Specific Extracellular Matrices. Tissue Engineering - Part A, 2013, 19, 49-58.	1.6	45
133	A Novel Polymeric Ionomer as a Potential Biomaterial: Crystallization Behavior, Degradation, and In-Vitro Cellular Interactions. Advanced Functional Materials, 2005, 15, 367-374.	7.8	44
134	Three-Dimensional Cell Grafting Enhances the Angiogenic Efficacy of Human Umbilical Vein Endothelial Cells. Tissue Engineering - Part A, 2012, 18, 310-319.	1.6	44
135	Nanothin Coculture Membranes with Tunable Pore Architecture and Thermoresponsive Functionality for Transfer-Printable Stem Cell-Derived Cardiac Sheets. ACS Nano, 2015, 9, 10186-10202.	7.3	44
136	Poly(l-lactide-co-glycolide) nanospheres conjugated with a nuclear localization signal for delivery of plasmid DNA. Journal of Drug Targeting, 2007, 15, 190-198.	2.1	43
137	Additive effect of endothelial progenitor cell mobilization and bone marrow mononuclear cell transplantation on angiogenesis in mouse ischemic limbs. Journal of Biomedical Science, 2007, 14, 323-330.	2.6	43
138	Smooth muscle-like tissues engineered with bone marrow stromal cells. Biomaterials, 2004, 25, 2979-2986.	5.7	42
139	Basic fibroblast growth factor promotes bone marrow stromal cell transplantation-mediated neural regeneration in traumatic brain injury. Biochemical and Biophysical Research Communications, 2007, 359, 40-45.	1.0	42
140	Ridge regeneration of damaged extraction sockets using rh <scp>BMP</scp> â€2: an experimental study in canine. Journal of Clinical Periodontology, 2015, 42, 678-687.	2.3	42
141	Thermosensitive, Stretchable, and Piezoelectric Substrate for Generation of Myogenic Cell Sheet Fragments from Human Mesenchymal Stem Cells for Skeletal Muscle Regeneration. Advanced Functional Materials, 2017, 27, 1703853.	7.8	42
142	Targeted Delivery of Mesenchymal Stem Cell-Derived Nanovesicles for Spinal Cord Injury Treatment. International Journal of Molecular Sciences, 2020, 21, 4185.	1.8	42
143	Small intestinal submucosa as a small-caliber venous graft: A novel model for hepatocyte transplantation on synthetic biodegradable polymer scaffolds with direct access to the portal venous system. Journal of Pediatric Surgery, 1999, 34, 124-128.	0.8	41
144	Cellular interactions and degradation of aliphatic poly(ester amide)s derived from glycine and/or 4-amino butyric acid. Biomaterials, 2003, 24, 3453-3462.	5.7	41

#	Article	IF	CITATIONS
145	The effect of the controlled release of nerve growth factor from collagen gel on the efficiency of neural cell culture. Biomaterials, 2009, 30, 126-132.	5.7	41
146	Adhesive barrier/directional controlled release for cartilage repair byÂendogenous progenitor cell recruitment. Biomaterials, 2015, 39, 173-181.	5.7	41
147	Tâ€Cellâ€Derived Nanovesicles for Cancer Immunotherapy. Advanced Materials, 2021, 33, e2101110.	11.1	41
148	Controlled release of nerve growth factor from fibrin gel. Journal of Biomedical Materials Research - Part A, 2007, 80A, 998-1002.	2.1	40
149	Behaviors of stem cells on carbon nanotube. Biomaterials Research, 2015, 19, 3.	3.2	40
150	Delivery of Basic Fibroblast Growth Factor Using Heparin-Conjugated Fibrin for Therapeutic Angiogenesis. Tissue Engineering - Part A, 2010, 16, 2113-2119.	1.6	39
151	Simple and facile preparation of recombinant human bone morphogenetic protein-2 immobilized titanium implant via initiated chemical vapor deposition technique to promote osteogenesis for bone tissue engineering application. Materials Science and Engineering C, 2019, 100, 949-958.	3.8	39
152	End-to-End Anastomosis between Tissue-Engineered Intestine and Native Small Bowel. Tissue Engineering, 1999, 5, 339-346.	4.9	38
153	Tissue-engineered neomucosa: morphology, enterocyte dynamics, and SGLT1 expression topography1. Transplantation, 2003, 75, 181-185.	0.5	38
154	Evidence for <i>In Vivo</i> Growth Potential and Vascular Remodeling of Tissue-Engineered Artery. Tissue Engineering - Part A, 2009, 15, 901-912.	1.6	38
155	Solid Free-Form Fabrication-Based PCL/HA Scaffolds Fabricated with a Multi-head Deposition System for Bone Tissue Engineering. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 951-962.	1.9	38
156	Cathepsin B-sensitive nanoprobe for in vivo tumor diagnosis. Journal of Materials Chemistry, 2011, 21, 17631.	6.7	38
157	Mutual effect of subcutaneously transplanted human adipose-derived stem cells and pancreatic islets within fibrin gel. Biomaterials, 2013, 34, 7247-7256.	5.7	38
158	Bone morphogenetic protein-2 for bone regeneration – Dose reduction through graphene oxide-based delivery. Carbon, 2014, 78, 428-438.	5.4	38
159	Cooperative Catechol-Functionalized Polypept(o)ide Brushes and Ag Nanoparticles for Combination of Protein Resistance and Antimicrobial Activity on Metal Oxide Surfaces. Biomacromolecules, 2018, 19, 1602-1613.	2.6	38
160	Open pore biodegradable matrices formed with gas foaming. Journal of Biomedical Materials Research Part B, 1998, 42, 396-402.	3.0	38
161	SUCCESSFUL ANASTOMOSIS BETWEEN TISSUE-ENGINEERED INTESTINE AND NATIVE SMALL BOWEL1,2. Transplantation, 1999, 67, 241-245.	0.5	38
162	TISSUE ENGINEERED STENTS CREATED FROM CHONDROCYTES. Journal of Urology, 2001, 165, 2091-2095.	0.2	37

BYUNG-SOO KIM

#	Article	IF	CITATIONS
163	Skin regeneration using keratinocytes and dermal fibroblasts cultured on biodegradable microspherical polymer scaffolds. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2005, 75B, 369-377.	1.6	37
164	Regeneration of whole meniscus using meniscal cells and polymer scaffolds in a rabbit total meniscectomy model. Journal of Biomedical Materials Research - Part A, 2006, 78A, 638-651.	2.1	37
165	The role of tauroursodeoxycholic acid on adipogenesis of human adipose-derived stem cells by modulation of ER stress. Biomaterials, 2014, 35, 2851-2858.	5.7	37
166	A Dual Delivery of Substance P and Bone Morphogenetic Protein-2 for Mesenchymal Stem Cell Recruitment and Bone Regeneration. Tissue Engineering - Part A, 2015, 21, 1275-1287.	1.6	37
167	Conditioned medium of adipose-derived stromal cell culture in three-dimensional bioreactors for enhanced wound healing. Journal of Surgical Research, 2015, 194, 8-17.	0.8	36
168	Local Delivery of Senolytic Drug Inhibits Intervertebral Disc Degeneration and Restores Intervertebral Disc Structure. Advanced Healthcare Materials, 2022, 11, e2101483.	3.9	36
169	Effect of chondrocyte passage number on histological aspects of tissue-engineered cartilage. Bio-Medical Materials and Engineering, 2007, 17, 269-76.	0.4	36
170	Cartilage Tissue Formation from Dedifferentiated Chondrocytes by Codelivery of BMP-2 and SOX-9 Genes Encoding Bicistronic Vector. Cell Transplantation, 2013, 22, 1519-1528.	1.2	35
171	Development of comprehensive accuracy assessment indexes for building footprint extraction. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43, 402-404.	2.7	34
172	Enhancement of Angiogenic Efficacy of Human Cord Blood Cell Transplantation. Tissue Engineering, 2006, 12, 1651-1661.	4.9	34
173	Threeâ€Dimensional Scaffolds of Carbonized Polyacrylonitrile for Bone Tissue Regeneration. Angewandte Chemie - International Edition, 2014, 53, 9213-9217.	7.2	34
174	Integration of mesenchymal stem cells with nanobiomaterials for the repair of myocardial infarction. Advanced Drug Delivery Reviews, 2015, 95, 15-28.	6.6	34
175	Graphene oxide reinforced hydrogels for osteogenic differentiation of human adipose-derived stem cells. RSC Advances, 2017, 7, 20779-20788.	1.7	34
176	Sensors in heart-on-a-chip: A review on recent progress. Talanta, 2020, 219, 121269.	2.9	34
177	InÂvivo fluorescence imaging for cancer diagnosis using receptor-targeted epidermal growth factor-based nanoprobe. Biomaterials, 2013, 34, 9149-9159.	5.7	33
178	Preliminary experience with tissue engineering of a venous vascular patch by using bone marrow–derived cells and a hybrid biodegradable polymer scaffold. Journal of Vascular Surgery, 2006, 44, 1329-1340.	0.6	32
179	Spinner-flask culture induces redifferentiation of de-differentiated chondrocytes. Biotechnology Letters, 2011, 33, 829-836.	1.1	32
180	Generation of Integrationâ€Free Induced Neurons Using Graphene Oxideâ€Polyethylenimine. Small, 2017, 13, 1601993.	5.2	32

#	Article	IF	CITATIONS
181	Synergistic effect of sustained delivery of basic fibroblast growth factor and bone marrow mononuclear cell transplantation on angiogenesis in mouse ischemic limbs. Biomaterials, 2006, 27, 1617-1625.	5.7	31
182	Tissue engineering of heart valves by recellularization of glutaraldehyde-fixed porcine valves using bone marrow-derived cells. Experimental and Molecular Medicine, 2006, 38, 273-283.	3.2	31
183	Electrical properties of composite films using carbon nanotube/polyelectrolyte self-assembled particles. Macromolecular Research, 2008, 16, 76-80.	1.0	31
184	Development of Functional Fibrous Matrices for the Controlled Release of Basic Fibroblast Growth Factor to Improve Therapeutic Angiogenesis. Tissue Engineering - Part A, 2010, 16, 2999-3010.	1.6	31
185	High-resolution elasticity imaging for tissue engineering. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2000, 47, 956-966.	1.7	30
186	Synergistic Effect of Keratinocyte Transplantation and Epidermal Growth Factor Delivery on Epidermal Regeneration. Cell Transplantation, 2005, 14, 809-817.	1.2	30
187	Tissueâ€engineered blood vessels with endothelial nitric oxide synthase activity. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 85B, 537-546.	1.6	30
188	Enhanced Bone Repair by Guided Osteoblast Recruitment Using Topographically Defined Implant. Tissue Engineering - Part A, 2016, 22, 654-664.	1.6	30
189	Heat-Generating Iron Oxide Multigranule Nanoclusters for Enhancing Hyperthermic Efficacy in Tumor Treatment. ACS Applied Materials & Interfaces, 2020, 12, 33483-33491.	4.0	30
190	Regenerative signals for tissue-engineered small intestine. Transplantation Proceedings, 1999, 31, 657-660.	0.3	29
191	Acquisition of human alveolar boneâ€derived stromal cells using minimally irrigated implant osteotomy: in vitro and in vivo evaluations. Journal of Clinical Periodontology, 2012, 39, 495-505.	2.3	29
192	Dual roles of hyaluronic acids in multilayer films capturing nanocarriers for drug-eluting coatings. Biomaterials, 2012, 33, 5468-5477.	5.7	29
193	Enhanced neuronal differentiation of pheochromocytoma 12 cells on polydopamine-modified surface. Biochemical and Biophysical Research Communications, 2013, 430, 1294-1300.	1.0	29
194	Therapeutic Angiogenesis via Solar Cell-Facilitated Electrical Stimulation. ACS Applied Materials & Interfaces, 2017, 9, 38344-38355.	4.0	29
195	Injectable Hydrogels for Regenerative Medicine. Tissue Engineering and Regenerative Medicine, 2018, 15, 511-512.	1.6	29
196	The Role of Transforming Growth Factor-Î ² and Bone Morphogenetic Protein with Fibrin Glue in Healing of Bone-Tendon Junction Injury. Connective Tissue Research, 2007, 48, 309-315.	1.1	28
197	Kidney Tissue Reconstruction by Fetal Kidney Cell Transplantation: Effect of Gestation Stage of Fetal Kidney Cells. Stem Cells, 2007, 25, 1393-1401.	1.4	28
198	Mesenchymal Stem Cell-Conditioned Medium Enhances Osteogenic and Chondrogenic Differentiation of Human Embryonic Stem Cells and Human Induced Pluripotent Stem Cells by Mesodermal Lineage Induction. Tissue Engineering - Part A, 2014, 20, 1306-1313.	1.6	28

#	Article	IF	CITATIONS
199	Transplantation of Heterospheroids of Islet Cells and Mesenchymal Stem Cells for Effective Angiogenesis and Antiapoptosis. Tissue Engineering - Part A, 2015, 21, 1024-1035.	1.6	28
200	pH-triggered release of manganese from MnAu nanoparticles that enables cellular neuronal differentiation without cellular toxicity. Biomaterials, 2015, 55, 33-43.	5.7	28
201	Interleukinâ€4 Gene Transfection and Spheroid Formation Potentiate Therapeutic Efficacy of Mesenchymal Stem Cells for Osteoarthritis. Advanced Healthcare Materials, 2020, 9, e1901612.	3.9	28
202	A collagen matrix derived from bladder can be used to engineer smooth muscle tissue. World Journal of Urology, 2008, 26, 307-314.	1.2	27
203	Enhancement of long-term angiogenic efficacy of adipose stem cells by delivery of FGF2. Microvascular Research, 2012, 84, 1-8.	1.1	27
204	The use of poly(lactic-co-glycolic acid) microspheres as injectable cell carriers for cartilage regeneration in rabbit knees. Journal of Biomaterials Science, Polymer Edition, 2006, 17, 925-939.	1.9	26
205	Tissue Engineering of Heart Valves In Vivo Using Bone Marrow-derived Cells. Artificial Organs, 2006, 30, 554-557.	1.0	26
206	Poly(lactic-co-glycolic acid) nanosphere as a vehicle for gene delivery to human cord blood-derived mesenchymal stem cells: comparison with polyethylenimine. Biotechnology Letters, 2008, 30, 1177-1182.	1.1	26
207	Enhancement of osteogenic and chondrogenic differentiation of human embryonic stem cells by mesodermal lineage induction with BMP-4 and FGF2 treatment. Biochemical and Biophysical Research Communications, 2013, 430, 793-797.	1.0	26
208	Nanoparticleâ€Mediated Blocking of Excessive Inflammation for Prevention of Heart Failure Following Myocardial Infarction. Small, 2021, 17, e2101207.	5.2	26
209	Senolytic Therapy for Cerebral Ischemia-Reperfusion Injury. International Journal of Molecular Sciences, 2021, 22, 11967.	1.8	26
210	Nanovesicleâ€Mediated Targeted Delivery of Immune Checkpoint Blockades to Potentiate Therapeutic Efficacy and Prevent Side Effects. Advanced Materials, 2022, 34, e2106516.	11.1	26
211	Renal tissue reconstitution by the implantation of renal segments on biodegradable polymer scaffolds. Biotechnology Letters, 2003, 25, 1505-1508.	1.1	25
212	The Effect of Platelet Rich Plasma from Bone Marrow Aspirate with Added Bone Morphogenetic Protein-2 on the Achilles Tendon-Bone Junction in Rabbits. Clinics in Orthopedic Surgery, 2011, 3, 325.	0.8	25
213	Optimization of matrix metalloproteinase fluorogenic probes for osteoarthritis imaging. Amino Acids, 2011, 41, 1113-1122.	1.2	25
214	The Effect of the Delivery Carrier on the Quality of Bone Formed via Bone Morphogenetic Proteinâ€2. Artificial Organs, 2012, 36, 642-647.	1.0	25
215	The enhancement of recombinant protein production by polymer nanospheres in cell suspension culture. Biomaterials, 2005, 26, 2173-2181.	5.7	24
216	Granulocyte colony-stimulating factor treatment enhances the efficacy of cellular cardiomyoplasty with transplantation of embryonic stem cell-derived cardiomyocytes in infarcted myocardium. Biochemical and Biophysical Research Communications, 2006, 340, 573-582.	1.0	24

BYUNG-SOO KIM

#	Article	IF	CITATIONS
217	Comparison of Osteogenic Potential Between Apatite-Coated Poly(Lactide-Co-Glycolide)/Hydroxyapatite Particulates and Bio-Oss. Dental Materials Journal, 2008, 27, 368-375.	0.8	24
218	Administration of tauroursodeoxycholic acid enhances osteogenic differentiation of bone marrow-derived mesenchymal stem cells and bone regeneration. Bone, 2016, 83, 73-81.	1.4	24
219	Local delivery of a senolytic drug in ischemia and reperfusion-injured heart attenuates cardiac remodeling and restores impaired cardiac function. Acta Biomaterialia, 2021, 135, 520-533.	4.1	24
220	Mesenchymal Stem Cells for Treatment of Myocardial Infarction. International Journal of Stem Cells, 2008, 1, 49-54.	0.8	24
221	In vitro biocompatibility evaluation of naturally derived and synthetic biomaterials using normal human bladder smooth muscle cells. Journal of Urology, 2002, 167, 1867-71.	0.2	24
222	Effects of culture conditions on osteogenic differentiation in human mesenchymal stem cells. Journal of Microbiology and Biotechnology, 2007, 17, 1113-9.	0.9	24
223	Porcine vesical acellular matrix graft of tunica albuginea for penile reconstruction. Asian Journal of Andrology, 2006, 8, 543-548.	0.8	23
224	Bone morphogenetic protein-2 enhances bone regeneration mediated by transplantation of osteogenically undifferentiated bone marrow-derived mesenchymal stem cells. Biotechnology Letters, 2008, 30, 1163-1168.	1.1	23
225	Platelet-Rich Plasma Enhances the Dermal Regeneration Efficacy of Human Adipose-Derived Stromal Cells Administered to Skin Wounds. Cell Transplantation, 2013, 22, 437-445.	1.2	23
226	Combined Sustained Delivery of Basic Fibroblast Growth Factor and Administration of Granulocyte Colony-Stimulating Factor:Synergistic Effect on Angiogenesis in Mouse Ischemic Limbs. Journal of Endovascular Therapy, 2006, 13, 175-181.	0.8	22
227	Cyclic mechanical strain promotes transformingâ€growthâ€factorâ€Î²1â€mediated cardiomyogenic marker expression in boneâ€marrowâ€derived mesenchymal stem cells <i>in vitro</i> . Biotechnology and Applied Biochemistry, 2010, 55, 191-197.	1.4	22
228	3,4-Dihydroxyphenylalanine-Assisted Hydroxyapatite Nanoparticle Coating on Polymer Scaffolds for Efficient Osteoconduction. Tissue Engineering - Part C: Methods, 2012, 18, 245-251.	1.1	22
229	Stretchable Piezoelectric Substrate Providing Pulsatile Mechanoelectric Cues for Cardiomyogenic Differentiation of Mesenchymal Stem Cells. ACS Applied Materials & Interfaces, 2017, 9, 22101-22111.	4.0	22
230	Artificial Slanted Nanocilia Array as a Mechanotransducer for Controlling Cell Polarity. ACS Nano, 2017, 11, 730-741.	7.3	22
231	Functional Extracellular Vesicles for Regenerative Medicine. Small, 2022, 18, e2106569.	5.2	22
232	Novel Application of Human Periodontal Ligament Stem Cells and Water-Soluble Chitin for Collagen Tissue Regeneration: <i>In Vitro</i> and <i>In Vivo</i> Investigations. Tissue Engineering - Part A, 2012, 18, 643-653.	1.6	21
233	Efficient formation of cell spheroids using polymer nanofibers. Biotechnology Letters, 2012, 34, 795-803.	1.1	21
234	Modelling APOE ɛ3/4 allele-associated sporadic Alzheimer's disease in an induced neuron. Brain, 2017, 140, 2193-2209.	3.7	21

#	Article	IF	CITATIONS
235	Measurement of MMP Activity in Synovial Fluid in Cases of Osteoarthritis and Acute Inflammatory Conditions of the Knee Joints Using a Fluorogenic Peptide Probe-Immobilized Diagnostic Kit. Theranostics, 2012, 2, 198-206.	4.6	20
236	Controlled Delivery of Lowâ€Dose Bone Morphogenetic Proteinâ€2 Using Heparinâ€Conjugated Fibrin in the Posterolateral Lumbar Fusion of Rabbits. Artificial Organs, 2013, 37, 487-494.	1.0	20
237	Controlled release of BMPâ€2 using a heparin onjugated carrier system reduces <i>in vivo</i> adipose tissue formation. Journal of Biomedical Materials Research - Part A, 2015, 103, 545-554.	2.1	20
238	Stable hepatocyte transplantation using fibrin matrix. Biotechnology Letters, 2004, 26, 505-508.	1.1	19
239	Combined therapy with human cord blood cell transplantation and basic fibroblast growth factor delivery for treatment of myocardial infarction. European Journal of Heart Failure, 2007, 9, 974-985.	2.9	19
240	Therapeutic angiogenesis by a myoblast layer harvested by tissue transfer printing from cell-adhesive, thermosensitive hydrogels. Biomaterials, 2013, 34, 8258-8268.	5.7	19
241	Prevascularized, multiple-layered cell sheets of direct cardiac reprogrammed cells for cardiac repair. Biomaterials Science, 2020, 8, 4508-4520.	2.6	19
242	Optimizing seeding and culture methods to engineer smooth muscle tissue on biodegradable polymer matrices. , 1998, 57, 46.		19
243	Anastomosis between tissue-engineered intestine and native small bowel. Transplantation Proceedings, 1999, 31, 661-662.	0.3	18
244	Design and characterization of a maltose binding protein-linked growth factor for matrix engineering. Biotechnology Letters, 2009, 31, 1677-1684.	1.1	18
245	Enhanced nerve growth factor efficiency in neural cell culture by immobilization on the culture substrate. Biochemical and Biophysical Research Communications, 2009, 382, 315-320.	1.0	18
246	Apatite-Coated Porous Poly(lactic-co-glycolic acid) Microspheres as an Injectable Bone Substitute. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 635-645.	1.9	18
247	Enhanced chondrogenic marker expression of human mesenchymal stem cells by interaction with both TGFâ€i²3 and hyaluronic acid. Biotechnology and Applied Biochemistry, 2011, 58, 271-276.	1.4	18
248	Autologous bone marrow cell transplantation combined with off-pump coronary artery bypass grafting in patients with ischemic cardiomyopathy. Canadian Journal of Surgery, 2008, 51, 269-75.	0.5	18
249	Electrorheological properties of carbon nanotube/polyelectrolyte selfâ€assembled polystyrene particles by layerâ€by″ayer assembly. Journal of Polymer Science Part A, 2008, 46, 1058-1065.	2.5	17
250	Combined delivery of heme oxygenase-1 gene and fibroblast growth factor-2 protein for therapeutic angiogenesis. Biomaterials, 2009, 30, 6247-6256.	5.7	17
251	Stem-cell Therapy for Peripheral Arterial Occlusive Disease. European Journal of Vascular and Endovascular Surgery, 2011, 42, 667-675.	0.8	17
252	Improved spinal fusion efficacy by long-term delivery of bone morphogenetic protein-2 in a rabbit model. Monthly Notices of the Royal Astronomical Society: Letters, 2011, 82, 756-760.	1.2	17

#	Article	IF	CITATIONS
253	Dose―and timeâ€dependent effects of recombinant human bone morphogenetic proteinâ€2 on the osteogenic and adipogenic potentials of alveolar boneâ€derived stromal cells. Journal of Periodontal Research, 2012, 47, 645-654.	1.4	17
254	Large scale and integrated platform for digital mass culture of anchorage dependent cells. Nature Communications, 2019, 10, 4824.	5.8	17
255	Synthesis and characterization of biocompatible copolymers containing plant-based cardanol and zwitterionic groups for antifouling and bactericidal coating applications. European Polymer Journal, 2019, 112, 688-695.	2.6	17
256	Modulation of Stem Cell Differentiation with Biomaterials. International Journal of Stem Cells, 2010, 3, 80-84.	0.8	17
257	Combined Gene Therapy with Hypoxia-Inducible Factor-1α and Heme Oxygenase-1 for Therapeutic Angiogenesis. Tissue Engineering - Part A, 2011, 17, 915-926.	1.6	16
258	Cellular Layer-by-Layer Coculture Platform Using Biodegradable, Nanoarchitectured Membranes for Stem Cell Therapy. Chemistry of Materials, 2017, 29, 5134-5147.	3.2	16
259	The Senolytic Drug JQ1 Removes Senescent Cells via Ferroptosis. Tissue Engineering and Regenerative Medicine, 2021, 18, 841-850.	1.6	16
260	Suspension culture of anchorage-dependent animal cells using nanospheres of the biodegradable polymer, poly(lactic-co-glycolic acid). Biotechnology Letters, 2003, 25, 1363-1367.	1.1	15
261	Suspension culture of hematopoietic stem cells in stirred bioreactors. Biotechnology Letters, 2003, 25, 179-182.	1.1	15
262	Enhanced random skin flap survival by sustained delivery of fibroblast growth factor 2 in rats. ANZ Journal of Surgery, 2013, 83, 354-358.	0.3	15
263	Cardiac-mimetic cell-culture system for direct cardiac reprogramming. Theranostics, 2019, 9, 6734-6744.	4.6	15
264	Production of human hematopoietic progenitors in a clinical-scale stirred suspension bioreactor. Biotechnology Letters, 1998, 20, 595-601.	1.1	14
265	Regeneration of kidney tissue using in vitro cultured fetal kidney cells. Experimental and Molecular Medicine, 2008, 40, 361.	3.2	14
266	Delivery of fibroblast growth factor 2 enhances the viability of cord blood-derived mesenchymal stem cells transplanted to ischemic limbs. Journal of Bioscience and Bioengineering, 2011, 111, 584-589.	1.1	14
267	Control of adult stem cell behavior with biomaterials. Tissue Engineering and Regenerative Medicine, 2014, 11, 423-430.	1.6	14
268	Antibacterial and biocompatible ABA-triblock copolymers containing perfluoropolyether and plant-based cardanol for versatile coating applications. RSC Advances, 2017, 7, 38091-38099.	1.7	14
269	Poly(lactic-co-glycolic acid) microspheres as a potential bulking agent for urological injection therapy: Preliminary results. Journal of Biomedical Materials Research Part B, 2005, 72B, 166-172.	3.0	13
270	Enhancement of <i>in vivo</i> bone regeneration efficacy of osteogenically undifferentiated human cord blood mesenchymal stem cells. Journal of Biomedical Materials Research - Part A, 2010, 93A, 666-672.	2.1	13

#	Article	IF	CITATIONS
271	Enhanced bone formation by marrowâ€derived endothelial and osteogenic cell transplantation. Journal of Biomedical Materials Research - Part A, 2010, 92A, 246-253.	2.1	13
272	Skin regeneration with fibroblast growth factor 2 released from heparin-conjugated fibrin. Biotechnology Letters, 2011, 33, 845-851.	1.1	13
273	In Situ Cardiomyogenic Differentiation of Implanted Bone Marrow Mononuclear Cells by Local Delivery of Transforming Growth Factor-β1. Cell Transplantation, 2012, 21, 299-312.	1.2	13
274	The dynamic healing profile of human periodontal ligament stem cells: histological and immunohistochemical analysis using an ectopic transplantation model. Journal of Periodontal Research, 2012, 47, 514-524.	1.4	13
275	Reduction of Adipose Tissue Formation by the Controlled Release of BMP-2 Using a Hydroxyapatite-Coated Collagen Carrier System for Sinus-Augmentation/Extraction-Socket Grafting. Materials, 2015, 8, 7634-7649.	1.3	13
276	Comprehensive study on the formation mechanism of highly bioactive compounds from Allium hookeri root using subcritical water and their antioxidant and anticancer effects. Journal of Supercritical Fluids, 2020, 157, 104709.	1.6	13
277	Highly porous polymer matrices as a three-dimensional culture system for hepatocytes: Initial results. Transplantation Proceedings, 1997, 29, 2032-2034.	0.3	12
278	HEK 293 cell suspension culture using fibronectin-adsorbed polymer nanospheres in serum-free medium. Journal of Biomedical Materials Research Part B, 2004, 71A, 128-133.	3.0	12
279	The effect of microsphere degradation rate on the efficacy of polymeric microspheres as bulking agents: An 18-month follow-up study. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 80B, 253-259.	1.6	12
280	Effect of Nucleus Pulposus Cells Having Different Phenotypes on Chondrogenic Differentiation of Adipose-Derived Stromal Cells in a Coculture System Using Porous Membranes. Tissue Engineering - Part A, 2011, 17, 2445-2451.	1.6	12
281	Efficient Bone Regeneration Induced by Bone Morphogenetic Protein-2 Released from Apatite-Coated Collagen Scaffolds. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 1659-1671.	1.9	12
282	Lumbar Posterolateral Fusion Using Heparinâ€Conjugated Fibrin for Sustained Delivery of Bone Morphogenic Proteinâ€⊋ in a Rabbit Model. Artificial Organs, 2012, 36, 629-634.	1.0	12
283	Effect of humoral factors from hPDLSCs on the biologic activity of hABCs. Oral Diseases, 2012, 18, 537-547.	1.5	12
284	The clinical effect of locally delivered minocycline in association with flap surgery for the treatment of chronic severe periodontitis: a splitâ€mouth design. Journal of Clinical Periodontology, 2012, 39, 753-759.	2.3	12
285	Non-invasive optical imaging of matrix metalloproteinase activity with albumin-based fluorogenic nanoprobes during angiogenesis in aÂmouse hindlimb ischemia model. Biomaterials, 2013, 34, 6871-6881.	5.7	12
286	A Disposable Photovoltaic Patch Controlling Cellular Microenvironment for Wound Healing. International Journal of Molecular Sciences, 2018, 19, 3025.	1.8	12
287	Tissue engineering of cartilage with chondrocytes cultured in a chemically-defined, serum-free medium. Biotechnology Letters, 2004, 26, 709-712.	1.1	11
288	A method for the effective formation of hepatocyte spheroids using a biodegradable polymer nanosphere. Journal of Biomedical Materials Research - Part A, 2006, 78A, 268-275.	2.1	11

#	Article	IF	CITATIONS
289	3,4â€dihydroxyâ€ <scp>L</scp> â€phenylalanine as a cell adhesion molecule in serumâ€free cell culture. Biotechnology Progress, 2012, 28, 1055-1060.	1.3	11
290	Regulatory T Cell-Mediated Tissue Repair. Advances in Experimental Medicine and Biology, 2018, 1064, 221-233.	0.8	11
291	Predicting in vivo therapeutic efficacy of bioorthogonally labeled endothelial progenitor cells in hind limb ischemia models via non-invasive fluorescence molecular tomography. Biomaterials, 2021, 266, 120472.	5.7	11
292	Enhancement of Human Peripheral Blood Mononuclear Cell Transplantation-Mediated Bone Formation. Cell Transplantation, 2011, 20, 1445-1452.	1.2	10
293	An Injectable Decellularized Matrix That Improves Mesenchymal Stem Cell Engraftment for Therapeutic Angiogenesis. ACS Biomaterials Science and Engineering, 2018, 4, 2571-2581.	2.6	10
294	Therapeutic angiogenesis using tumor cell onditioned medium. Biotechnology Progress, 2016, 32, 456-464.	1.3	9
295	Synergistic Therapeutic Effect of Three-Dimensional Stem Cell Clusters and Angiopoietin-1 on Promoting Vascular Regeneration in Ischemic Region. Tissue Engineering - Part A, 2018, 24, 616-630.	1.6	9
296	Angiogenesis Induced by Autologous Whole Bone Marrow Stem Cells Transplantation. International Journal of Stem Cells, 2008, 1, 64-69.	0.8	9
297	Volume-Stable Adipose Tissue Formation by Implantation of Human Adipose-Derived Stromal Cells Using Solid Free-Form Fabrication-Based Polymer Scaffolds. Annals of Plastic Surgery, 2013, 70, 98-102.	0.5	8
298	Biocompatible Ag nanoparticle-embedded poly(2-hydroxyethyl methacrylate) derivative films with bacterial adhesion-resistant and antibacterial properties. Macromolecular Research, 2014, 22, 337-343.	1.0	8
299	Incorporation of Gold-Coated Microspheres into Embryoid Body of Human Embryonic Stem Cells for Cardiomyogenic Differentiation. Tissue Engineering - Part A, 2015, 21, 374-381.	1.6	8
300	Efficient Direct Lineage Reprogramming of Fibroblasts into Induced Cardiomyocytes Using Nanotopographical Cues. Journal of Biomedical Nanotechnology, 2017, 13, 269-279.	0.5	8
301	Spontaneous healing of human amnion in the premature rupture of membrane model. Placenta, 2020, 97, 29-35.	0.7	8
302	Intracellular Uptake Mechanism of Bioorthogonally Conjugated Nanoparticles on Metabolically Engineered Mesenchymal Stem Cells. Bioconjugate Chemistry, 2021, 32, 199-214.	1.8	8
303	Submucosal injection of poly(lactic-co-glycolic acid) microspheres in rabbit bladder as a potential treatment for urinary incontinence and vesicoureteral reflux: preliminary results. Journal of Biomaterials Science, Polymer Edition, 2005, 16, 1109-1120.	1.9	7
304	Bacterial Adhesionâ€Resistant Poly(2â€hydroxyethyl methacrylate) Derivative for Mammalian Cell Cultures. Macromolecular Bioscience, 2012, 12, 211-217.	2.1	7
305	Culture on a 3,4-Dihydroxy- <scp>l</scp> -Phenylalanine-Coated Surface Promotes the Osteogenic Differentiation of Human Mesenchymal Stem Cells. Tissue Engineering - Part A, 2013, 19, 1255-1263.	1.6	7
306	Enhancing Therapeutic Efficacy and Reducing Cell Dosage in Stem Cell Transplantation Therapy for Ischemic Limb Diseases by Modifying the Cell Injection Site. Tissue Engineering - Part A, 2016, 22, 349-362.	1.6	7

#	Article	IF	CITATIONS
307	Reversible Cell Layering for Heterogeneous Cell Assembly Mediated by Ionic Cross-Linking of Chitosan and a Functionalized Cell Surface Membrane. Chemistry of Materials, 2017, 29, 5294-5305.	3.2	7
308	Umbilical Cord Mesenchymal Stem Cell-Derived Nanovesicles Potentiate the Bone-Formation Efficacy of Bone Morphogenetic Protein 2. International Journal of Molecular Sciences, 2020, 21, 6425.	1.8	7
309	3D Microphysiological Systemâ€Inspired Scalable Vascularized Tissue Constructs for Regenerative Medicine. Advanced Functional Materials, 2022, 32, 2105475.	7.8	7
310	In Vitro Biocompatibility Evaluation Of Naturally Derived And Synthetic Biomaterials Using Normal Human Bladder Smooth Muscle Cells. Journal of Urology, 2002, , 1867-1871.	0.2	7
311	A Senolytic-Eluting Coronary Stent for the Prevention of In-Stent Restenosis. ACS Biomaterials Science and Engineering, 2022, 8, 1921-1929.	2.6	7
312	Histological Behavior of HDPE Scaffolds Fabricated by the "Press-and-Baking―Method. Journal of Bioactive and Compatible Polymers, 2005, 20, 361-376.	0.8	6
313	Anti-coagulating hydroxyethyl starch blended with hyaluronic acid as a novel post-surgical adhesion barrier. Macromolecular Research, 2010, 18, 1076-1080.	1.0	6
314	Novel analysis model for implant osseointegration using ectopic bone formation via the recombinant human bone morphogenetic protein-2/macroporous biphasic calcium phosphate block system in rats: a proof-of-concept study. Journal of Periodontal and Implant Science, 2012, 42, 136.	0.9	6
315	Editorial: Scientific and engineering progress in stem cell and regenerative medicine research. Biotechnology Journal, 2014, 9, 863-864.	1.8	6
316	Apatite oated Collagen Sponge for the Delivery of Bone Morphogenetic Proteinâ€2 in Rabbit Posterolateral Lumbar Fusion. Artificial Organs, 2014, 38, 893-899.	1.0	6
317	Topographyâ€Guided Control of Local Migratory Behaviors and Protein Expression of Cancer Cells. Advanced Healthcare Materials, 2017, 6, 1700155.	3.9	6
318	Tumor-targeting glycol chitosan nanocarriers: overcoming the challenges posed by chemotherapeutics. Expert Opinion on Drug Delivery, 2019, 16, 835-846.	2.4	6
319	Mammalian cell cultivation on serum-coated microcarriers. Biotechnology Letters, 1992, 6, 347-352.	0.5	5
320	Enhanced biocompatibility in poly(3-hexylthiophene)-based organic thin-film transistors upon blending with poly(2-(2-acetoxyacetyl)ethyl methacrylate). RSC Advances, 2016, 6, 16540-16547.	1.7	5
321	Lineage Specific Differentiation of Magnetic Nanoparticle-Based Size Controlled Human Embryoid Body. ACS Biomaterials Science and Engineering, 2017, 3, 1719-1729.	2.6	5
322	Preparation of mechanically enhanced hydrogel scaffolds by incorporating interfacial polymer nanorods for nerve electrode application. Fibers and Polymers, 2017, 18, 2248-2254.	1.1	5
323	Defining the role of transforming growth factor β1 in Foxp3+ T regulatory cells. Immunity, 2021, 54, 393-394.	6.6	5
324	Inhibition of topoisomerase I shapes antitumor immunity through the induction of monocyte-derived dendritic cells. Cancer Letters, 2021, 520, 38-47.	3.2	5

#	Article	IF	CITATIONS
325	Engineering of Human Cartilage Rods: Potential Application for Penile Prostheses. Journal of Urology, 2002, , 1794-1797.	0.2	5
326	Reconstruction of a Rabbit Ulna Bone Defect Using Bone Marrow Stromal Cells and a PLA/ <i>β</i> â€TCP Composite by a Novel Sintering Method. Advanced Engineering Materials, 2009, 11, B169.	1.6	4
327	3D hierarchical scaffolds enabled by a post-patternable, reconfigurable, and biocompatible 2D vitrimer film for tissue engineering applications. Journal of Materials Chemistry B, 2019, 7, 3341-3345.	2.9	4
328	Recovery of water-soluble bioactive components from defatted sesame meal using carbon dioxide assisted hydrothermal process. Journal of Supercritical Fluids, 2021, 168, 105069.	1.6	4
329	Multilayered Cell Sheets of Cardiac Reprogrammed Cells for the Evaluation of Drug Cytotoxicity. Tissue Engineering and Regenerative Medicine, 2021, 18, 807-818.	1.6	4
330	In vitro biocompatibility assessment of naturally derived and synthetic biomaterials using normal human urothelial cells. Journal of Biomedical Materials Research Part B, 2001, 55, 33-39.	3.0	4
331	Tissue Engineered Bone Formation with Polymer/Ceramic Composites by Press-and-Baking Method. Key Engineering Materials, 2005, 288-289, 79-82.	0.4	3
332	In vivo monitoring of angiogenesis in a mouse hindlimb ischemia model using fluorescent peptide-based probes. Amino Acids, 2016, 48, 1641-1654.	1.2	3
333	CO2-assisted hydrothermal reactions for ginseng extract. Journal of Supercritical Fluids, 2018, 135, 17-24.	1.6	3
334	Generation of an induced pluripotent stem cell line KUMCi001-A from CD34+ bone marrow cells of a patient with acute lymphoblastic leukemia using human placenta-derived cell conditioned medium. Stem Cell Research, 2020, 47, 101913.	0.3	3
335	The Healing Effect of Bone Morphogenic Protein with Fibrin Glue on an Injury of the Tendon-Bone Junction. The Journal of the Korean Orthopaedic Association, 2007, 42, 115.	0.0	3
336	Enhanced Immunogenicity of Engineered HER2 Antigens Potentiates Antitumor Immune Responses. Vaccines, 2020, 8, 403.	2.1	2
337	Mesenchymal Cell Culture. , 2002, , 287-292.		2
338	Open pore biodegradable matrices formed with gas foaming. , 1998, 42, 396.		1
339	Preparation of an Acellular Scaffold. Manuals in Biomedical Research, 2007, , 133-140.	0.0	1
340	Long-term Angiogenesis Efficacy Using a Heparin-Conjugated Fibrin (HCF) Delivery System with HBM-MSCs. International Journal of Stem Cells, 2012, 5, 23-30.	0.8	1
341	A human pluripotent stem cell line KUMi004-A generated from a patient with chronic lymphocytic leukemia. Stem Cell Research, 2022, 60, 102668.	0.3	1
342	Plasmid stability in a recombinant mammalian cell bioprocess. Biotechnology Letters, 1992, 14, 351-356.	1.1	0

BYUNG-SOO KIM

#	Article	IF	CITATIONS
343	Tissueâ€Engineered Blood Vessels With Endothelial Nitric Oxide Synthase Activity. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 87B, 302-302.	1.6	0
344	Porous Poly(Lactic-Co-Glycolic Acid) Microsphere as Cell Culture Substrate and Cell Transplantation Vehicle. , 2012, , 355-364.		0
345	Generation of induced pluripotent stem cell line KUMi002-A with normal karyotype from a patient with Philadelphia chromosome-positive chronic myeloid leukemia. Stem Cell Research, 2021, 55, 102465.	0.3	0
346	Generation of the induced pluripotent stem cell line KUMi001-A carrying the Philadelphia chromosome from a chronic myeloid leukemia patient. Stem Cell Research, 2021, 55, 102464.	0.3	0
347	Enhancement of Angiogenic Efficacy of Human Cord Blood Cell Transplantation. Tissue Engineering, 2006, .	4.9	0
348	Combined Therapies of Cell Transplantation and Molecular Delivery. Biotechnology and Bioprocessing Series, 2011, , 281-290.	0.0	0
349	Generation of a human induced pluripotent stem cell line KUMi006 from a patient with multiple myeloma. Stem Cell Research, 2022, 61, 102767.	0.3	0