Alan Liska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1008719/publications.pdf

Version: 2024-02-01

1307594 1372567 20 122 7 10 citations g-index h-index papers 20 20 20 187 docs citations times ranked all docs citing authors

#	Article	IF	CITATIONS
1	Electrochemical and Quantum Chemical Investigation of Tetranitrocalix[4] arenes: Molecules with Multiple Redox Centers. Journal of Organic Chemistry, 2013, 78, 10651-10656.	3.2	25
2	Comparison of the electron work function, hole concentration and exciton diffusion length for P3HT and PT prepared by thermal or acid cleavage. Solid-State Electronics, 2016, 116, 111-118.	1.4	14
3	Formation and proof of stable bi-, tri- and tetraradical polyanions during the electrochemical reduction of cone-polynitrocalix[4]arenes. An ESR-UV-vis spectroelectrochemical study. Electrochimica Acta, 2014, 140, 572-578.	5. 2	11
4	Influence of structure on electrochemical reduction of isomeric mono- and di-, nitro- or nitrosocalix[4]arenes. Monatshefte Für Chemie, 2015, 146, 857-862.	1.8	11
5	Fullerene recognition by 5-nitro-11,17,23,29-tetramethylcalix[5]arene. Tetrahedron Letters, 2015, 56, 1535-1538.	1.4	8
6	Stereoelectrochemistry of calixarenes – Molecules with multiple redox centers. Current Opinion in Electrochemistry, 2018, 8, 45-51.	4.8	8
7	Oxidation potentials of guanine, guanosine and guanosine- $5\hat{a}\in^2$ -monophosphate: Theory and experiment. Electrochimica Acta, 2019, 318, 108-119.	5. 2	8
8	Electrochemical and Quantum Chemical Study of Reactivity of Orthophthalaldehyde with Aliphatic Primary Amines. Journal of the Electrochemical Society, 2016, 163, G127-G132.	2.9	5
9	Facile Construction and In Silico Study of Quinolineâ€Attached Resorcinarene Fluorescent Sensor for the Recognition of Insensitive Munition Compounds. ChemistrySelect, 2018, 3, 12951-12959.	1.5	5
10	The <i>cone</i> -tetranitrocalix[4]arene tetraradical tetraanion as an electrochemically generated ligand for heavier alkali metal cations. Chemical Communications, 2019, 55, 2817-2820.	4.1	5
11	Electrochemical Reduction and Intramolecular Electron Communication of Nitro Substituted Thiacalix[4]arenes. Electroanalysis, 2016, 28, 2861-2865.	2.9	4
12	Preparation and redox properties of fluorinated 1,3-diphenylisobenzofurans. Electrochimica Acta, 2019, 321, 134659.	5.2	4
13	A study of the planarity of the pyrrolone fragment in 2-isopropyl-2,3-dihydro-1H-isoindol-1-one. Acta Crystallographica Section C, Structural Chemistry, 2016, 72, 518-524.	0.5	3
14	Facile construction & modeling of a highly active thiacalixphenyl[4]arene-protected nano-palladium catalyst for various C–C cross-coupling reactions. New Journal of Chemistry, 2019, 43, 5611-5622.	2.8	3
15	The "Dark Side―of Germanium-Based Photoinitiatorsâ€"Connecting Redox Properties and Optical Absorption. Organometallics, 2020, 39, 2257-2268.	2.3	3
16	Reactivity of orthophthalaldehyde with aliphatic, alicyclic and aromatic primary diamines: Electrochemical study and mechanistic considerations. Journal of Electroanalytical Chemistry, 2018, 821, 131-139.	3.8	2
17	Electrochemical Reduction of Oligo-nitrocalix[4]Arenes - Molecules with Multiple Redox Centers, Different Conformations and Variable Shape. ECS Transactions, 2015, 66, 23-31.	0.5	1
18	Electrochemical, EPR, and computational study of pyrene conjugatesâ€"precursors for novel type of organic semiconductors. Journal of Solid State Electrochemistry, 2022, 26, 503-514.	2. 5	1

#	Article	IF	CITATIONS
19	Electrochemical, EPR, and quantum chemical study of reductive cleavage of <i>cone</i> alix[4]arene nosylates – New electrosynthetic approach. Electrochemical Science Advances, 2023, 3, .	2.8	1
	Diameter of a chatter and a small and formation to (2D* 12C2C* 22C2D*) 2 (12C2+++++++++++++++++++++++++++++++++++	\ T: FTO 0.0	O DT IO

Planarity of substituted pyrrole and furan rings in $(3R^*, 1\hat{a} \in 2S^*, 3\hat{a} \in 2R^*)$ -3- $(1\hat{a} \in 2$ -tert-butylamino- $1\hat{a} \in 2H, 3\hat{a} \in 2$) Tj ETQq0 0 0 rgBT /Overlog 0.8 0

- Crystalline Materials, 2017, 232, 441-452.