
Tomohiro Tada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10085542/publications.pdf Version: 2024-02-01

Τομομίρο Τλολ

#	Article	IF	CITATIONS
1	Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images. Gastric Cancer, 2018, 21, 653-660.	2.7	539
2	Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks. Gastrointestinal Endoscopy, 2019, 89, 25-32.	0.5	314
3	Application of Convolutional Neural Networks in the Diagnosis of Helicobacter pylori Infection Based on Endoscopic Images. EBioMedicine, 2017, 25, 106-111.	2.7	231
4	Automatic detection of erosions and ulcerations in wireless capsule endoscopy images based on a deep convolutional neural network. Gastrointestinal Endoscopy, 2019, 89, 357-363.e2.	0.5	217
5	Novel computer-assisted diagnosis system for endoscopic disease activity in patients with ulcerative colitis. Gastrointestinal Endoscopy, 2019, 89, 416-421.e1.	0.5	157
6	Automatic detection and classification of protruding lesions in wireless capsule endoscopy images based on a deep convolutional neural network. Gastrointestinal Endoscopy, 2020, 92, 144-151.e1.	0.5	124
7	Classification for invasion depth of esophageal squamous cell carcinoma using a deep neural network compared with experienced endoscopists. Gastrointestinal Endoscopy, 2019, 90, 407-414.	0.5	113
8	Detecting early gastric cancer: Comparison between the diagnostic ability of convolutional neural networks and endoscopists. Digestive Endoscopy, 2021, 33, 141-150.	1.3	105
9	Endoscopic detection and differentiation of esophageal lesions using a deep neural network. Gastrointestinal Endoscopy, 2020, 91, 301-309.e1.	0.5	101
10	Application of artificial intelligence using convolutional neural networks in determining the invasion depth of esophageal squamous cell carcinoma. Esophagus, 2020, 17, 250-256.	1.0	79
11	Clinical usefulness of a deep learningâ€based system as the first screening on smallâ€bowel capsule endoscopy reading. Digestive Endoscopy, 2020, 32, 585-591.	1.3	74
12	Application of convolutional neural networks for evaluating <i>Helicobacter pylori</i> infection status on the basis of endoscopic images. Scandinavian Journal of Gastroenterology, 2019, 54, 158-163.	0.6	70
13	Highly accurate artificial intelligence systems to predict the invasion depth of gastric cancer: efficacy of conventional white-light imaging, nonmagnifying narrow-band imaging, andÂindigo-carmine dye contrast imaging. Gastrointestinal Endoscopy, 2020, 92, 866-873.e1.	0.5	67
14	Detecting gastric cancer from video images using convolutional neural networks. Digestive Endoscopy, 2019, 31, e34-e35.	1.3	61
15	Comparison of performances of artificial intelligence versus expert endoscopists for real-time assisted diagnosis of esophageal squamous cell carcinoma (with video). Gastrointestinal Endoscopy, 2020, 92, 848-855.	0.5	60
16	Automatic detection of various abnormalities in capsule endoscopy videos by a deep learning-based system: a multicenter study. Gastrointestinal Endoscopy, 2021, 93, 165-173.e1.	0.5	42
17	Artificial intelligenceâ€based detection of pharyngeal cancer using convolutional neural networks. Digestive Endoscopy, 2020, 32, 1057-1065.	1.3	35
18	Real-time assessment of video images for esophageal squamous cell carcinoma invasion depth using artificial intelligence. Journal of Gastroenterology, 2020, 55, 1037-1045.	2.3	33

Tomohiro Tada

#	Article	IF	CITATIONS
19	Artificial intelligence for the detection of esophageal and esophagogastric junctional adenocarcinoma. Journal of Gastroenterology and Hepatology (Australia), 2021, 36, 131-136.	1.4	25
20	Utilizing artificial intelligence in endoscopy: a clinician's guide. Expert Review of Gastroenterology and Hepatology, 2020, 14, 689-706.	1.4	24
21	Usefulness of an artificial intelligence system for the detection of esophageal squamous cell carcinoma evaluated with videos simulating overlooking situation. Digestive Endoscopy, 2021, 33, 1101-1109.	1.3	18
22	Ability of artificial intelligence to detect T1 esophageal squamous cell carcinoma from endoscopic videos and the effects of real-time assistance. Scientific Reports, 2021, 11, 7759.	1.6	17
23	Reduced p16 expression correlates with lymphatic invasion in colorectal cancers. Hepato-Gastroenterology, 2003, 50, 1756-60.	0.5	16
24	Artificial intelligence for cancer detection of the upper gastrointestinal tract. Digestive Endoscopy, 2021, 33, 254-262.	1.3	15
25	Diagnosis of pharyngeal cancer on endoscopic video images by Mask regionâ€based convolutional neural network. Digestive Endoscopy, 2021, 33, 569-576.	1.3	13
26	Implementation of artificial intelligence in upper gastrointestinal endoscopy. DEN Open, 2022, 2, .	0.5	3