Jianwen Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10085305/publications.pdf

Version: 2024-02-01

759233 677142 24 502 12 22 citations h-index g-index papers 24 24 24 784 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Novel understanding of carbothermal reduction enhancing electronic and ionic conductivity of Li ₄ Ti ₅ O ₁₂ anode. Journal of Materials Chemistry A, 2015, 3, 11773-11781.	10.3	88
2	Carbon-coated LiCrTiO4 electrode material promoting phase transition to reduce asymmetric polarization for lithium-ion batteries. Physical Chemistry Chemical Physics, 2014, 16, 2882.	2.8	49
3	The polyacrylic latex: an efficient water-soluble binder for LiNi1/3Co1/3Mn1/3O2 cathode in li-ion batteries. Journal of Solid State Electrochemistry, 2016, 20, 1-8.	2.5	48
4	Enhancing sodium-ion storage performance of MoO2/N-doped carbon through interfacial Mo-N-C bond. Science China Materials, 2021, 64, 85-95.	6.3	48
5	Carbon encapsulated Sn-Co alloy: A stabilized tin-based material for sodium storage. Materials Letters, 2018, 210, 321-324.	2.6	34
6	Facile synthesis of nanocrystalline-assembled nest-like NiO hollow microspheres with superior lithium storage performance. RSC Advances, 2017, 7, 31287-31297.	3.6	32
7	Layered Cathode Materials: Precursors, Synthesis, Microstructure, Electrochemical Properties, and Battery Performance. Small, 2022, 18, e2107697.	10.0	28
8	Preparation and characterization of LiTi2O4 anode material synthesized by one-step solid-state reaction. Ionics, 2010, 16, 425-429.	2.4	27
9	Organosilicon functionalized glycerol carbonates as electrolytes for lithium-ion batteries. RSC Advances, 2015, 5, 17660-17666.	3.6	19
10	Crucial role of water content on the electrochemical performance of \hat{l}_{\pm} -Ni(OH)2 as an anode material for lithium-ion batteries. Ionics, 2021, 27, 65-74.	2.4	17
11	Facile synthesis of nanostructured Li ₄ Ti ₅ O ₁₂ /PEDOT:PSS composite as anode material for lithium-ion batteries. RSC Advances, 2016, 6, 95512-95517.	3.6	16
12	An improved solid-state method for synthesizing LiNi0.5Mn1.5O4 cathode material for lithium ion batteries. Journal of Alloys and Compounds, 2017, 715, 304-310.	5 . 5	16
13	Microspherical LiFePO3.98F0.02/3DG/C as an advanced cathode material for high-energy lithium-ion battery with a superior rate capability and long-term cyclability. Ionics, 2021, 27, 1-11.	2.4	12
14	Synthesis and Electrochemical Properties of Y-Doped LiNi $<$ sub $>1/3<$ sub $>Mn<$ sub $>1/3<$ sub $>Co<$ sub $>1/3<$ sub $>O<$ sub $>2<$ sub $>Cathode Materials for Li-Ion Battery. Integrated Ferroelectrics, 2011, 127, 150-156.$	0.7	11
15	LiMn ₂ O ₄ Cathode Materials with Excellent Performances by Synergistic Enhancement of Double-Cation (Na ⁺ , Mg ²⁺) Doping and 3DG Coating for Power Lithium-Ion Batteries. Journal of Physical Chemistry C, 2020, 124, 26106-26116.	3.1	11
16	Improved solid-state synthesis and electrochemical properties of LiNi0.6Mn0.2Co0.2O2 cathode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2020, 844, 156034.	5.5	11
17	A Novel Aminoalkyldisiloxane Compound as a Film-Forming Electrolyte Additive for Graphite Anode. Electrochemistry, 2015, 83, 537-540.	1.4	7
18	Facile synthesis of monodispersed α-Fe2O3 cubes as a high-performance anode material for lithium-ion batteries. Ionics, 2021, 27, 3291-3299.	2.4	7

#	Article	IF	CITATION
19	Mechanism and properties of rod-like Li1.2Mn0.54Ni0.13Co0.13O2 cathode material synthesized by \hat{l}^2 -MnO2 template for advanced Li-ion batteries. Journal of Alloys and Compounds, 2021, 867, 158935.	5.5	5
20	Electrochemical Performance and Behavior Mechanism for Zn/LiFePO ₄ Battery in a Slightly Acidic Aqueous Electrolyte. ChemSusChem, 2022, 15, .	6.8	5
21	Monodisperse SnO2/Co3O4 nanocubes synthesized via phase separation and their advantages in electrochemical Li-ion storage. Ionics, 2020, 26, 6125-6132.	2.4	4
22	Fabrication of ZnSe/C Hollow Polyhedrons for Lithium Storage. Chemistry - A European Journal, 2021, 27, 14989-14995.	3.3	4
23	Formation mechanism of spinel LiTi2O4 prepared by carbon thermal reduction reaction. RSC Advances, 2015, 5, 97720-97723.	3.6	3
24	Theoretical Investigation on the Electron Transport Behavior of Fe-Porphyrin Complexes. Integrated Ferroelectrics, 2011, 127, 91-96.	0.7	0