# Xian-Yong Wei

# List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1008172/xian-yong-wei-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 265
 5,306
 40
 59

 papers
 citations
 h-index
 g-index

 274
 6,373
 4.8
 5.99

 ext. papers
 ext. citations
 avg, IF
 L-index

| #   | Paper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IF                | Citations |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|
| 265 | Insight into a stepped fragmentation of coal-related model compounds using a tandem Orbitrap mass spectrometer. <i>Microchemical Journal</i> , <b>2022</b> , 174, 107056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.8               |           |
| 264 | Investigation on the structural features of Hecaogou subbituminous coal and its residues by multiple technical strategies. <i>Fuel</i> , <b>2022</b> , 309, 122111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.1               | 1         |
| 263 | Analysis of Pyrolysis Performance and Molecular Structure of Five Kinds of Low-Rank Coals in Xinjiang Based on the TG-DTG Method <i>ACS Omega</i> , <b>2022</b> , 7, 8547-8557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.9               | 1         |
| 262 | Overview: Effective Separation of Oxygen-, Nitrogen-, and Sulfur-Containing Aromatics in High-Temperature Coal Tar by Ionic Liquids and Deep Eutectic Solvents: Experimental and Computational. <i>Industrial &amp; Engineering Chemistry Research</i> , <b>2022</b> , 61, 4481-4492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.9               | О         |
| 261 | Advances in mild degradation and directional upgrading of lignites: From feature identification to value-added utilization. <i>Journal of Analytical and Applied Pyrolysis</i> , <b>2022</b> , 163, 105477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                 | О         |
| 260 | Interface modification based on MnO2@N-doped activated carbon composites for flexible solid-state asymmetric supercapacitors. <i>Energy</i> , <b>2022</b> , 249, 123659                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.9               | 3         |
| 259 | Promotional effect of metallic Co and Fe on Ni-based catalysts for p-cresol deoxygenation. <i>Fuel</i> , <b>2022</b> , 321, 124033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.1               | О         |
| 258 | Comprehensive investigation of the mechanisms for pyrolyzing macromolecular networks in Hecaogou subbituminous coal by comparing the ethanolysis and flash pyrolysis. <i>Fuel</i> , <b>2022</b> , 324, 12461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19 <sup>7.1</sup> |           |
| 257 | Fabrication of N/O self-doped hierarchical porous carbons derived from modified coal tar pitch for high-performance supercapacitors. <i>Fuel</i> , <b>2021</b> , 122418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.1               | 2         |
| 256 | Hierarchical porous carbon derived from coal and biomass for high performance supercapacitors. <i>Fuel</i> , <b>2021</b> , 311, 122552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.1               | 8         |
| 255 | Functional Group Characteristics and Pyrolysis/Combustion Performance of Karamay OS Based on FT-IR and TG-DTG Analyses. <i>ACS Omega</i> , <b>2021</b> , 6, 27684-27696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.9               | 1         |
| 254 | Characterization of Oxygen-Containing Aromatics in a Low-Temperature Coal Tar. <i>Energy &amp; Energy &amp; Ener</i> | 4.1               | 2         |
| 253 | Insights into coke location of catalyst deactivation during in-situ catalytic reforming of lignite pyrolysis volatiles over cobalt-modified zeolites. <i>Applied Catalysis A: General</i> , <b>2021</b> , 613, 118018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.1               | 9         |
| 252 | Value-added utilization of high-temperature coal tar: A review. Fuel, 2021, 292, 119954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.1               | 8         |
| 251 | Effect of Swelling by Organic Solvent on Structure, Pyrolysis, and Methanol Extraction Performance of Hefeng Bituminous Coal. <i>ACS Omega</i> , <b>2021</b> , 6, 14765-14773                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.9               | 2         |
| 250 | Preparation of Co-Mo/EAl2O3 catalyst and the catalytic hydrogenation effects on coal-related model compounds. <i>Journal of the Energy Institute</i> , <b>2021</b> , 96, 52-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.7               | 2         |
| 249 | Optimization of Extraction Technology, Structure, and Antioxidant Activity of Polysaccharide from Grifola frondosa. <i>Starch/Staerke</i> , <b>2021</b> , 73, 2000200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.3               | O         |

Catalytic Upgrading of Lignite Pyrolysis Volatiles over AlF3-Modified HZSM-5 to Light Aromatics: 248 Synergistic Effects of One-Step Dealumination and Realumination. Energy & Synergistic Effects of One-Step Dealumination and Realumination. Energy & Synergistic Effects of One-Step Dealumination and Realumination. Solvent Effect on the Hydroconversion of Lignin-Related Model Compounds over MoO3. Energy 4.1 & Fuels, **2021**, 35, 12142-12150 A self-healing hydrogel electrolyte towards all-in-one flexible supercapacitors. Journal of Materials 246 2.1 1 Science: Materials in Electronics, **2021**, 32, 20445-20460 Nano WO3-Catalyzed One-Pot Process for Mild Oxidative Depolymerization of Lignin and its Model 5.2 245 Compounds. *ChemCatChem*, **2021**, 13, 3836-3845 Detoxification modification of coal-tar pitch by ultraviolet & microwave radiation-enhanced chemical reaction and toxicity evaluation by chemical index and cytotoxicity assay in vitro. Journal 12.8 3 244 of Hazardous Materials, 2021, 410, 124648 Green and effective catalytic hydroconversion of an extractable portion from an oil sludge to clean 6 243 jet and diesel fuels over a mesoporous Y zeolite-supported nickel catalyst. Fuel, 2021, 287, 119396 Evaluation of catalytic deoxygenation of soluble species from a coal using mass spectrometers. 1.6 242 Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2021, 43, 1363-1372 Effective Separation of Condensed Arenes from High-Temperature Coal Tar and Insight into 241 4.1 Related Intermolecular Interactions. Energy & Depth 2021, 35, 4267-4272 Functional group characteristics and pyrolysis/combustion performance of fly ashes from Karamay 240 7.1 9 oily sludge based on FT-IR and TG-DTG analyses. Fuel, 2021, 296, 120669 Copolymer hydrogel as self-standing electrode for high performance all-hydrogel-state 239 4.3 4 supercapacitor. Journal of Materials Science, 2021, 56, 16028-16043 Preparation of hierarchical porous carbons from a coal tar pitch modified by fluid catalytic cracking 238 3 4.3 oil for a high-performance supercapacitor. Journal of Materials Science, 2021, 56, 16591-16601 Deep catalytic hydroconversion of straw-derived bio-oil to alkanes over mesoporous zeolite Y 6 8.1 237 supported nickel nanoparticles. Renewable Energy, 2021, 173, 876-885 Insight into molecular interactions between condensed aromatics in high-temperature coal tar and 236 organic solvents by combining experimental, density functional theory, and molecular dynamics. 7.1 2 Fuel, 2021, 300, 120942 Selective enrichment of carbazole from an anthracene slag by extraction: Experiment and 6 235 simulation. Journal of Molecular Liquids, 2021, 341, 117382 Deep hydroconversion of ethanol-soluble portion from the ethanolysis of Hecaogou subbituminous coal to ultra-clean liquid fuel over hierarchical porous zeolite Y supported Nito nanoparticles. 234 5.7 3 Journal of the Energy Institute, 2021, 99, 88-96 Investigation on the composition of soluble portions from the extraction residue of Hanglaiwan 233 7.1 subbituminous coal by thermal dissolution and alkanolyses. Fuel, 2021, 306, 121747 Building Relationships between Molecular Composition of Carbon Precursor and Capacitance of a 232 6.1 5 Hierarchical Porous Carbon-Based Supercapacitor. ACS Applied Energy Materials, 2021, 4, 985-995 Catalytic Degradation and Directional Upgrading of Zhunnan Lignite: Double Constraint of Active Hydrogen and Effective Acquisition of Derived Arenes over Nickel Ferrite. Energy & Derived Arenes over Nickel Ferrite. 231 , 35, 19943-19952

| 230 | Catalytic Fast Pyrolysis of Sewage Sludge over HZSM-5: A Study of Light Aromatics, Coke, and Nitrogen Migration under Different Atmospheres. <i>Industrial &amp; Different Atmospheres</i> . <i>Industrial &amp; Different Atmospheres</i> . 17537-17545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.9 | 4  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 229 | Alcoholysis of Linfen bituminous coal: effect of temperature and solvent. <i>Energy Sources, Part A:</i> Recovery, Utilization and Environmental Effects, <b>2020</b> , 1-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.6 |    |
| 228 | Effective Separation and Purification of Nitrogen-Containing Aromatics from the Light Portion of a High-Temperature Coal Tar Using Choline Chloride and Malonic Acid: Experimental and Molecular Dynamics Simulation. <i>ACS Sustainable Chemistry and Engineering</i> , <b>2020</b> , 8, 9464-9471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.3 | 5  |
| 227 | Hydrogenolysis of lignin-derived aryl ethers to monomers over a MOF-derived Ni/Nt catalyst. <i>Reaction Chemistry and Engineering</i> , <b>2020</b> , 5, 886-895                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.9 | 11 |
| 226 | Phytic acid-doped poly(aniline-co-pyrrole) copolymers for supercapacitor electrodes applications.<br>Journal of Materials Science: Materials in Electronics, <b>2020</b> , 31, 6263-6273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.1 | 4  |
| 225 | Catalytic Hydroconversion of Runbei Lignite over a Highly Active Solid Superacid. <i>ChemistrySelect</i> , <b>2020</b> , 5, 6646-6651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.8 | 1  |
| 224 | Effect of Swelling Treatment by Organic Solvent on the Structure and Pyrolysis Performance of the Direct Coal Liquefaction Residue. <i>Energy &amp; Direct Coal Liquefaction Residue</i> . | 4.1 | 8  |
| 223 | Observing the structural variation of Dahuangshan lignite and four derived residues by non-destructive techniques and flash pyrolysis. <i>Fuel</i> , <b>2020</b> , 269, 117335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.1 | 8  |
| 222 | Synthesis of ZSM-5 using different silicon and aluminum sources nature for catalytic conversion of lignite pyrolysis volatiles to light aromatics. <i>Fuel</i> , <b>2020</b> , 268, 117286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.1 | 19 |
| 221 | Preparation of layered-porous carbon from coal tar pitch narrow fractions by single-solvent extraction for superior cycling stability electric double layer capacitor application. <i>Journal of Colloid and Interface Science</i> , <b>2020</b> , 567, 347-356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.3 | 16 |
| 220 | Catalytic Hydroconversion of a High-Temperature Coal Tar over Two Attapulgite Powder-Supported Nickel Catalysts. <i>Energy &amp; Double Coal</i> 2020, 34, 1288-1296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.1 | 2  |
| 219 | Directional Catalytic Hydroconversion of Oxybis (methylene)dibenzene and an Extract from Piliqing Subbituminous Coal over a Magnetic Difunctional Solid Superbase. <i>ChemistrySelect</i> , <b>2020</b> , 5, 1130-1134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.8 | 1  |
| 218 | Investigation on Naphthalene and Its Derivatives-Based Microporous Organic Hyper-Cross-Linked Polymers via Different Methodologies. <i>Macromolecular Chemistry and Physics</i> , <b>2020</b> , 221, 1900302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.6 | 2  |
| 217 | Separation of arenols from a low-temperature coal tar by liquid-liquid extraction. <i>Korean Journal of Chemical Engineering</i> , <b>2020</b> , 37, 835-838                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.8 | 3  |
| 216 | Catalytic reforming of lignite pyrolysis volatiles over sulfated HZSM-5: Significance of the introduced extra-framework Al species. <i>Fuel</i> , <b>2020</b> , 273, 117789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.1 | 20 |
| 215 | Effect of Swelling with Ionic Liquid on the Molecular Structure and Pyrolysis Behavior of Hefeng Sub-bituminous Coal. <i>Energy &amp; Documents</i> 2020, 34, 16099-16108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.1 | 3  |
| 214 | Sustainable Porous Carbon with High Specific Surface Area from Soybean Shell via Hydrothermal Carbonization with H3PO4 for Electric Double-Layer Capacitor Applications. <i>Energy Technology</i> , <b>2020</b> , 8, 1901103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.5 | 5  |
| 213 | Enhanced hydrogenation of aromatic rings and hydrocracking of >CarO bridged bonds in the extraction residue from Piliqing subbituminous coal over a magnetic difunctional solid superbase. <i>Journal of Analytical and Applied Pyrolysis</i> , <b>2020</b> , 146, 104695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6   | 1  |

#### (2019-2020)

| 212 | Catalytic Hydroconversion of Ethanol-Soluble Portion from the Ethanolysis of Hecaogou Subbituminous Coal Extraction Residue to Clean Liquid Fuel over a Zeolite Y/ZSM-5 Composite Zeolite-Supported Nickel Catalyst. <i>Energy &amp; Energy</i> & 2020, 34, 4799-4807                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.1            | 10 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----|
| 211 | Insight into molecular characteristics of a Chinese coal via separation, characterization, and data processing. <i>Journal of Separation Science</i> , <b>2020</b> , 43, 839-846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.4            |    |
| 210 | Synthesis of poly(phenylene methylenes) via a AlCl3-mediated Friedel@raft alkylation of multi-substituted benzyl bromide with benzene. <i>Journal of Applied Polymer Science</i> , <b>2020</b> , 137, 48779                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.9            | 1  |
| 209 | High-performance electrode material for electric double-layer capacitor based on hydrothermal pre-treatment of lignin by ZnCl2. <i>Applied Surface Science</i> , <b>2020</b> , 508, 144536                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.7            | 20 |
| 208 | Carbon Dots Derived from Facile Tailoring of Shaerhu Lignite as a Novel Fluorescence Sensor with High-Selectivity and Sensitivity for Cu2+ Detection. <i>ChemistrySelect</i> , <b>2020</b> , 5, 12125-12130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.8            | 3  |
| 207 | Sequential thermal dissolution of two low-rank coals and characterization of their structures by high-performance liquid chromatography/time-of-flight mass spectrometry and gas chromatography/mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , <b>2020</b> , 34, e8887                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.2            | 1  |
| 206 | Catalytic hydroconversion of derivates from Naomaohu lignite over an active and recyclable bimetallic catalyst. <i>Fuel Processing Technology</i> , <b>2020</b> , 204, 106388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.2            | 6  |
| 205 | Investigation on the Structural Features of Hanglaiwan Subbituminous Coal and Its Residues from Solvent Extraction and Thermal Dissolution. <i>Energy &amp; Energy &amp; Energy</i> | 4.1            | 3  |
| 204 | Selective hydrogenolysis of C O bonds in benzyloxybenzene and dealkaline lignin to valuable aromatics over Ni/TiN. <i>Fuel Processing Technology</i> , <b>2020</b> , 209, 106523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.2            | 7  |
| 203 | Production of Benzenecarboxylic Acids from Geting Bituminous Coal through Oxidation with NaOCl Enhanced by Pretreatment with H2O2. <i>ChemistrySelect</i> , <b>2020</b> , 5, 8380-8385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.8            | 2  |
| 202 | Comprehensive research of in situ upgrading of sawdust fast pyrolysis vapors over HZSM-5 catalyst for producing renewable light aromatics. <i>Journal of the Energy Institute</i> , <b>2020</b> , 93, 15-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.7            | 13 |
| 201 | Study on the oxygen forms in soluble portions from thermal dissolution and alkanolyses of the extraction residue from Baiyinhua lignite. <i>Fuel</i> , <b>2020</b> , 260, 116301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.1            | 7  |
| 200 | Preparation of Porous Carbon Spheres Under Different Activation Conditions from 2-Keto-l-gulonic Acid Mother Liquor for Electric Double-Layer Capacitor. <i>Waste and Biomass Valorization</i> , <b>2020</b> , 11, 4429-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - <u>4</u> 440 | 2  |
| 199 | Highly Selective Hydrogenation of Furfural to Furan-2-ylmethanol over Zeolitic Imidazolate Frameworks-67-Templated Magnetic Cu <b>[</b> Io/C. <i>Catalysis Letters</i> , <b>2020</b> , 150, 178-184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.8            | 5  |
| 198 | Investigation on the structural characteristics of the residues from extraction and oxidation of a sawdust. <i>Fuel</i> , <b>2020</b> , 273, 117091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.1            | 4  |
| 197 | Two-Step Catalytic Degradations of Dahuangshan Lignite and Directional Upgrading of the Resulting Petroleum Ether-Extractable Portions. <i>Energy &amp; Damp; Fuels</i> , <b>2020</b> , 34, 5457-5465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.1            | 3  |
| 196 | One-pot Facile Synthesis of Multifunctional Conjugated Microporous Polymers via Suzuki-Miyaura Coupling Reaction. <i>ChemistrySelect</i> , <b>2020</b> , 5, 1410-1415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.8            | 2  |
| 195 | Application of a Dual-Solvent Method in Separating Paraffin from a Shale Oil: A Combined Experimental and DFT Study. <i>Industrial &amp; Experimental Chemistry Research</i> , <b>2019</b> , 58, 17507-17513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.9            | 4  |

| 194 | Insight into the Compositions of the Soluble/Insolube Portions from the Acid/Base Extraction of Five Fractions Distilled from a High Temperature Coal Tar. <i>Energy &amp; Distilled From Bigh Temperature Coal Tar. Energy &amp; Distilled From Bigh Temperature Coal Tar. Ene</i> | 4.1            | 4   |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|
| 193 | Sulfation-acidified HZSM-5 catalyst for in-situ catalytic conversion of lignite pyrolysis volatiles to light aromatics. <i>Fuel</i> , <b>2019</b> , 255, 115784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.1            | 37  |
| 192 | Deep hydroconversion of ethanol-soluble portion from the ethanolysis of Dahuangshan lignite to clean liquid fuel over a mordenite supported nickel catalyst. <i>Journal of Analytical and Applied Pyrolysis</i> , <b>2019</b> , 139, 13-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6              | 19  |
| 191 | Enhancement of light aromatics from catalytic fast pyrolysis of cellulose over bifunctional hierarchical HZSM-5 modified by hydrogen fluoride and nickel/hydrogen fluoride. <i>Bioresource Technology</i> , <b>2019</b> , 278, 116-123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11             | 72  |
| 190 | Insight into molecular compositions of soluble species from sequential thermal dissolution of Liuhuanggou bituminous coal and its extraction residue. <i>Fuel</i> , <b>2019</b> , 253, 762-771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.1            | 9   |
| 189 | Selective and effective separation of five condensed arenes from a high-temperature coal tar by extraction combined with high pressure preparative chromatography. <i>Journal of Chromatography A</i> , <b>2019</b> , 1603, 160-164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.5            | 8   |
| 188 | Changes in oxygen-functional moieties during sequential thermal dissolution and methanolysis of the extraction residue from Zhaotong lignite. <i>Journal of Analytical and Applied Pyrolysis</i> , <b>2019</b> , 139, 40-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4 <del>7</del> | 5   |
| 187 | Catalytic hydroconversion of Yinggemajianfeng lignite over difunctional Ni-Mg2Si/EAl2O3. <i>Fuel</i> , <b>2019</b> , 249, 496-502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.1            | 4   |
| 186 | A novel enzymatic biosensor for detection of intracellular hydrogen peroxide based on 1-aminopyrene and reduced graphene oxides. <i>Journal of Chemical Sciences</i> , <b>2019</b> , 131, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.8            | 10  |
| 185 | Insights into Physicochemical Changes of Yinggemajianfeng Lignite in Co-Solvents of Ionic Liquids and Methanol. <i>Energy &amp; Description</i> 2019, 33, 2867-2871                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.1            | 3   |
| 184 | Insight into molecular information of Huolinguole lignite obtained by Fourier transform ion cyclotron resonance mass spectrometry and statistical methods. <i>Rapid Communications in Mass Spectrometry</i> , <b>2019</b> , 33, 1107-1113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.2            | 2   |
| 183 | Nitrogen migration mechanism and formation of aromatics during catalytic fast pyrolysis of sewage sludge over metal-loaded HZSM-5. <i>Fuel</i> , <b>2019</b> , 244, 151-158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.1            | 45  |
| 182 | Preparation of nanocellulose and lignin-carbohydrate complex composite biological carriers and culture of heart coronary artery endothelial cells. <i>International Journal of Biological Macromolecules</i> , 2019, 137, 1161-1168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.9            | 18  |
| 181 | Changes in oxygen functionality of soluble portions and residues from bagasse sub- and supercritical alkanolyses: Identification of complex structural fragments. <i>Biomass and Bioenergy</i> , <b>2019</b> , 127, 105288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.3            | 2   |
| 180 | Recent advances in syngas production from biomass catalytic gasification: A critical review on reactors, catalysts, catalytic mechanisms and mathematical models. <i>Renewable and Sustainable Energy Reviews</i> , <b>2019</b> , 116, 109426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16.2           | 145 |
| 179 | Enhanced Light Aromatic Yield from Lignite Pyrolysis by Remedying the Acid Sites of Different Hierarchical HZSM-5. <i>Energy &amp; amp; Fuels</i> , <b>2019</b> , 33, 12346-12352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.1            | 7   |
| 178 | In Situ Upgrading of Cellulose Pyrolysis Volatiles Using Hydrofluorinated and Platinum-Loaded HZSM-5 for High Selectivity Production of Light Aromatics. <i>Industrial &amp; Discourse Chemistry Research</i> , <b>2019</b> , 58, 22193-22201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.9            | 22  |
| 177 | A Novel Evaluation Method Developed for the Denitrogenation and Deoxygenation on Molecules in Coal during Catalytic Treatments. <i>ChemistrySelect</i> , <b>2019</b> , 4, 13582-13588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.8            | 3   |

| 176 | Effect of zeolite structure on light aromatics formation during upgrading of cellulose fast pyrolysis vapor. <i>Journal of the Energy Institute</i> , <b>2019</b> , 92, 1567-1576                                                      | 5.7                | 25  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----|
| 175 | Comparison of Kinetics and Activity of Ni-Based Catalysts for Benzyl Phenyl Ether Catalytic Hydrogenolysis. <i>Energy Technology</i> , <b>2019</b> , 7, 1800694                                                                        | 3.5                | 8   |
| 174 | Catalytic hydroconversion of Yiwu lignite over solid superacid and solid superbase. Fuel, 2019, 238, 473                                                                                                                               | - <del>48</del> 12 | 10  |
| 173 | Isolation and purification of carbazole contained in anthracene slag by extraction combined with medium pressure liquid chromatography. <i>Chinese Journal of Chemical Engineering</i> , <b>2019</b> , 27, 2925-2929                   | 3.2                | 5   |
| 172 | Optimization of Ultrasonic-Microwave Assisted Extraction and Hepatoprotective Activities of Polysaccharides from. <i>Molecules</i> , <b>2019</b> , 24,                                                                                 | 4.8                | 14  |
| 171 | A three-step dissociation method for converting Xiaolongtan lignite into soluble organic compounds: Insights into chemicals, geochemical clues, and structural characteristics. <i>Fuel</i> , <b>2019</b> , 242, 883-892               | 7.1                | 2   |
| 170 | Catalytic conversion of lignite pyrolysis volatiles to light aromatics over ZSM-5: SiO2/Al2O3 ratio effects and mechanism insights. <i>Journal of Analytical and Applied Pyrolysis</i> , <b>2019</b> , 139, 22-30                      | 6                  | 28  |
| 169 | Three-Dimensional Hierarchical Porous Carbon with High Oxygen Content Derived from Organic Waste Liquid with Superior Electric Double Layer Performance. <i>ACS Sustainable Chemistry and Engineering</i> , <b>2019</b> , 7, 4037-4046 | 8.3                | 25  |
| 168 | Preparation of hierarchical HZSM-5 based sulfated zirconium solid acid catalyst for catalytic upgrading of pyrolysis vapors from lignite pyrolysis. <i>Fuel</i> , <b>2019</b> , 237, 1079-1085                                         | 7.1                | 50  |
| 167 | An Effective Approach for Separating Carbazole and Its Derivates from Coal-Tar-Derived Anthracene Oil Using Ionic Liquids. <i>Energy &amp; Description</i> 2019, 33, 513-522                                                           | 4.1                | 14  |
| 166 | Mass spectrometric evaluation of the soluble species of Shengli lignite using cluster analysis methods. <i>Fuel</i> , <b>2019</b> , 236, 1037-1042                                                                                     | 7.1                | 17  |
| 165 | Temperature-controlled hydrogenation of anthracene over nickel nanoparticles supported on attapulgite powder. <i>Fuel</i> , <b>2018</b> , 223, 222-229                                                                                 | 7.1                | 26  |
| 164 | Formation of aromatics and removal of nitrogen in catalytic fast pyrolysis of sewage sludge: A study of sewage sludge and model amino acids. <i>Fuel</i> , <b>2018</b> , 218, 148-154                                                  | 7.1                | 52  |
| 163 | Catalytic upgrading of pyrolysis vapors from lignite over mono/bimetal-loaded mesoporous HZSM-5. <i>Fuel</i> , <b>2018</b> , 218, 33-40                                                                                                | 7.1                | 114 |
| 162 | Enhancement of Aromatic Products from Catalytic Fast Pyrolysis of Lignite over Hierarchical HZSM-5 by Piperidine-Assisted Desilication. <i>ACS Sustainable Chemistry and Engineering</i> , <b>2018</b> , 6, 1792-18                    | 862 <sup>3</sup>   | 43  |
| 161 | Increasing light aromatic products during upgrading of lignite pyrolysis vapor over Co-modified HZSM-5. <i>Journal of Analytical and Applied Pyrolysis</i> , <b>2018</b> , 130, 190-197                                                | 6                  | 40  |
| 160 | A highly active bifunctional solid acid for di(1-naphthyl)methane hydroconversion. Fuel, 2018, 220, 101-                                                                                                                               | 1 <del>/</del> 0.8 | 7   |
| 159 | Effects of reaction conditions on catalytic hydroconversion of phenethoxybenzene over bifunctional Ni/H\(\Pi\)Asia-Pacific Journal of Chemical Engineering, <b>2018</b> , 13, e2228                                                    | 1.3                | 2   |

| 158 | Rapid analysis of carboxylic acids and esters with a direct analysis in real time ion source. <i>Rapid Communications in Mass Spectrometry</i> , <b>2018</b> , 32, 1521-1528                                                          | 2.2 | 2  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 157 | In-source collision activated dissociation for coal/biomass-based model compounds and structural characterization of a coal extract. <i>Fuel</i> , <b>2018</b> , 234, 1033-1043                                                       | 7.1 | 6  |
| 156 | Solubility of a Russia vacuum residue and group composition of the soluble fractions in different solvents. <i>Petroleum Science and Technology</i> , <b>2018</b> , 36, 1427-1431                                                     | 1.4 |    |
| 155 | Preparation of porous carbon spheres from 2-keto-l-gulonic acid mother liquor by oxidation and activation for electric double-layer capacitor application. <i>Journal of Colloid and Interface Science</i> , <b>2018</b> , 513, 20-27 | 9.3 | 14 |
| 154 | Oxidative degradation of the extraction residue from a sawdust. Fuel, 2018, 212, 586-592                                                                                                                                              | 7.1 | 5  |
| 153 | Synthesis of a Novel Polycarboxylate Superplasticizer with Hyperbranched Structure. <i>ChemistrySelect</i> , <b>2018</b> , 3, 13493-13496                                                                                             | 1.8 | 4  |
| 152 | Insight into the structural features of organic species in Fushun oil shale via thermal dissolution. <i>Chinese Journal of Chemical Engineering</i> , <b>2018</b> , 26, 2162-2168                                                     | 3.2 | 5  |
| 151 | Fe2O3/Attapulgite-mediated reaction of benzyl chloride: Synthesis of poly(phenylene methylene). <i>Journal of Polymer Science Part A</i> , <b>2018</b> , 56, 2280-2285                                                                | 2.5 | 4  |
| 150 | Molecular Characteristics of Shenfu Coal Characterized by Mass Spectrometers with Three Ion Sources. <i>ChemistrySelect</i> , <b>2018</b> , 3, 10383-10387                                                                            | 1.8 |    |
| 149 | Solvent-controlled selective hydrodeoxygenation of bio-derived guaiacol to arenes or phenols over a biochar supported Co-doped MoO2 catalyst. <i>Fuel Processing Technology</i> , <b>2018</b> , 179, 114-123                          | 7.2 | 43 |
| 148 | Characterization of nitrogen and sulfur-containing species in Zhaotong lignite and its extracts from ultrasonic extraction. <i>Fuel</i> , <b>2018</b> , 219, 417-425                                                                  | 7.1 | 17 |
| 147 | Tandem mass spectrometric evaluation of core structures of aromatic compounds after catalytic deoxygenation. <i>Fuel Processing Technology</i> , <b>2018</b> , 176, 119-123                                                           | 7.2 | 35 |
| 146 | Catalytic Hydrogenation of Levulinic Acid into Gamma-Valerolactone Over Ni/HZSM-5 Catalysts. <i>Catalysis Surveys From Asia</i> , <b>2018</b> , 22, 129-135                                                                           | 2.8 | 10 |
| 145 | Evaluation of coal-related model compounds using tandem mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , <b>2018</b> , 32, 1462-1472                                                                             | 2.2 | 9  |
| 144 | Enhanced hydrocracking Car-Calk bridged bonds in the extraction residue from Piliqing subbituminous coal over a recyclable and active magnetic solid superacid. <i>Fuel Processing Technology</i> , <b>2018</b> , 176, 316-324        | 7.2 | 7  |
| 143 | Catalytic hydroconversion of the extraction residue from Naomaohu lignite over an active and separable magnetic solid superbase. <i>Fuel</i> , <b>2018</b> , 226, 410-416                                                             | 7.1 | 14 |
| 142 | Application of mass spectrometry in the characterization of chemicals in coal-derived liquids. <i>Mass Spectrometry Reviews</i> , <b>2017</b> , 36, 543-579                                                                           | 11  | 33 |
| 141 | Ameliorative effect of Trametes orientalis polysaccharide against immunosuppression and oxidative stress in cyclophosphamide-treated mice. <i>International Journal of Biological Macromolecules</i> , <b>2017</b> , 95, 1216-1222    | 7.9 | 44 |

## (2017-2017)

| 140 | In situ upgrading of Shengli lignite pyrolysis vapors over metal-loaded HZSM-5 catalyst. <i>Fuel Processing Technology</i> , <b>2017</b> , 160, 19-26                                                            | 7.2 | 123 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 139 | Two-step depolymerization of Zhaotong lignite in ethanol. <i>Fuel</i> , <b>2017</b> , 196, 391-397                                                                                                               | 7.1 | 14  |
| 138 | Characterization of humic acids extracted from a lignite and interpretation for the mass spectra. <i>RSC Advances</i> , <b>2017</b> , 7, 20677-20684                                                             | 3.7 | 44  |
| 137 | Highly selective catalytic hydroconversion of benzyloxybenzene to bicyclic cyclanes over bifunctional nickel catalysts. <i>Catalysis Communications</i> , <b>2017</b> , 98, 38-42                                | 3.2 | 19  |
| 136 | Catalytic hydroconversion of lignite-related model compounds over difunctional Ni-Mg2Si/EAl2O3. <i>Fuel</i> , <b>2017</b> , 200, 208-217                                                                         | 7.1 | 12  |
| 135 | Difunctional nickel/microfiber attapulgite modified with an acidic ionic liquid for catalytic hydroconversion of lignite-related model compounds. <i>Fuel</i> , <b>2017</b> , 204, 236-242                       | 7.1 | 13  |
| 134 | Preparation of porous carbons from waste sugar residue for high performance electric double-layer capacitor. <i>Fuel Processing Technology</i> , <b>2017</b> , 162, 45-54                                        | 7.2 | 17  |
| 133 | A recyclable and highly active magnetic solid superbase for hydrocracking CO bridged bonds in sawdust. <i>Fuel Processing Technology</i> , <b>2017</b> , 159, 396-403                                            | 7.2 | 8   |
| 132 | Study on pine sawdust pyrolysis behavior by fast pyrolysis under inert and reductive atmospheres.<br>Journal of Analytical and Applied Pyrolysis, 2017, 125, 279-288                                             | 6   | 36  |
| 131 | An acidic ionic liquid modified microfiber attapulgite-supported nickel for catalytic hydroconversion of Haiarylalkanes. <i>Fuel Processing Technology</i> , <b>2017</b> , 161, 85-94                            | 7.2 | 8   |
| 130 | Extraction and thermal dissolution of Piliqing subbituminous coal. Fuel, 2017, 200, 282-289                                                                                                                      | 7.1 | 27  |
| 129 | Catalytic Reforming of Volatiles from Biomass Pyrolysis for Hydrogen-Rich Gas Production over Limonite Ore. <i>Energy &amp; Double Company</i> 2017, 31, 4054-4060                                               | 4.1 | 48  |
| 128 | Analysis of soluble components in coals and interpretations for the complex mass spectra. <i>Rapid Communications in Mass Spectrometry</i> , <b>2017</b> , 31, 503-508                                           | 2.2 | 12  |
| 127 | Structural Characterization of Lignin and Its Degradation Products with Spectroscopic Methods.<br>Journal of Spectroscopy, <b>2017</b> , 2017, 1-15                                                              | 1.5 | 112 |
| 126 | Analytical Strategies Involved in the Detailed Componential Characterization of Biooil Produced from Lignocellulosic Biomass. <i>International Journal of Analytical Chemistry</i> , <b>2017</b> , 2017, 9298523 | 1.4 | 16  |
| 125 | Comparison of three methods for extracting Liuhuanggou bituminous coal. <i>Fuel</i> , <b>2017</b> , 210, 290-297                                                                                                 | 7.1 | 15  |
| 124 | Preparation of porous carbons by hydrothermal carbonization and KOH activation of lignite and their performance for electric double layer capacitor. <i>Electrochimica Acta</i> , <b>2017</b> , 252, 397-407     | 6.7 | 68  |
| 123 | Effect of Ethanolysis on the Structure and Pyrolytic Reactivity of Zhaotong Lignite. <i>Energy &amp; amp;</i> Fuels, <b>2017</b> , 31, 10768-10774                                                               | 4.1 | 7   |

| 122 | Extension of catalyst lifetime by doping of Ce in Ni-loaded acid-washed Shengli lignite char for biomass catalytic gasification. <i>Catalysis Science and Technology</i> , <b>2017</b> , 7, 5741-5749                                                         | 5.5  | 30  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 121 | Preparation of porous carbon sphere from waste sugar solution for electric double-layer capacitor.<br>Journal of Power Sources, <b>2017</b> , 361, 249-258                                                                                                    | 8.9  | 61  |
| 120 | Nitrogen Evolution during Fast Pyrolysis of Sewage Sludge under Inert and Reductive Atmospheres. <i>Energy &amp; Description</i> 2017, 31, 7191-7196                                                                                                          | 4.1  | 32  |
| 119 | Chemical Compositional Analysis of Catalytic Hydroconversion Products of Heishan Coal Liquefaction Residue. <i>International Journal of Analytical Chemistry</i> , <b>2017</b> , 2017, 4303596                                                                | 1.4  | 6   |
| 118 | Detailed Componential Characterization of Extractable Species with Organic Solvents from Wheat Straw. <i>International Journal of Analytical Chemistry</i> , <b>2017</b> , 2017, 7305682                                                                      | 1.4  | 2   |
| 117 | Characterization of a Chinese lignite and the corresponding derivatives using direct analysis in real time quadrupole time-of-flight mass spectrometry. <i>RSC Advances</i> , <b>2016</b> , 6, 105780-105785                                                  | 3.7  | 11  |
| 116 | Compositional features of extracts from Shenmu char powder. <i>Journal of Fuel Chemistry and Technology</i> , <b>2016</b> , 44, 1-6                                                                                                                           | 1.8  | 7   |
| 115 | Structural evaluation of Xiaolongtan lignite by direct characterization and pyrolytic analysis. <i>Fuel Processing Technology</i> , <b>2016</b> , 144, 248-254                                                                                                | 7.2  | 39  |
| 114 | Characterization of nitrogen- and oxygen-containing species in methanol-extractable portion from Xinghe lignite. <i>Fuel Processing Technology</i> , <b>2016</b> , 142, 167-173                                                                               | 7.2  | 20  |
| 113 | Hydrocracking of benzyloxybenzene as a lignite-related model compound over a novel solid acid. <i>Fuel Processing Technology</i> , <b>2016</b> , 146, 110-115                                                                                                 | 7.2  | 16  |
| 112 | Characterization of Oxygenates, Nitrogenates, and Sulfonates in Shengli Lignite Extracts by Orbitrap Mass Spectrometry. <i>Analytical Letters</i> , <b>2016</b> , 49, 2907-2916                                                                               | 2.2  | 7   |
| 111 | Sequential ultrasonic extraction of a Chinese coal and characterization of nitrogen-containing compounds in the extracts using high-performance liquid chromatography with mass spectrometry. <i>Journal of Separation Science</i> , <b>2016</b> , 39, 2491-8 | 3.4  | 17  |
| 110 | Insight into the chemical complexity of ethanolysis products from extraction residue of Zhaotong lignite. <i>Fuel</i> , <b>2016</b> , 174, 287-295                                                                                                            | 7.1  | 11  |
| 109 | Catalytic hydroconversion of methanol-soluble portion from Xiaolongtan lignite over difunctional Ni/Z5A. <i>Fuel Processing Technology</i> , <b>2016</b> , 148, 146-154                                                                                       | 7.2  | 20  |
| 108 | Separation and structural characterization of the value-added chemicals from mild degradation of lignites: A review. <i>Applied Energy</i> , <b>2016</b> , 170, 415-436                                                                                       | 10.7 | 90  |
| 107 | Identification of organonitrogen and organooxygen compounds in the extraction residue from Buliangou subbituminous coal by FTICRMS. <i>Fuel</i> , <b>2016</b> , 171, 151-158                                                                                  | 7.1  | 22  |
| 106 | Pyrolysis kinetics of soybean straw using thermogravimetric analysis. Fuel, 2016, 169, 93-98                                                                                                                                                                  | 7.1  | 127 |
| 105 | Organic oxygen transformation during pyrolysis of Baiyinhua lignite. <i>Journal of Analytical and Applied Pyrolysis</i> , <b>2016</b> , 117, 106-115                                                                                                          | 6    | 64  |

## (2015-2016)

| 104 | Sequential Extraction and Thermal Dissolution of Baiyinhua Lignite in Isometric CS2/Acetone and Toluene/Methanol Binary Solvents. <i>Energy &amp; Energy &amp; 2016</i> , 30, 47-53                                                                   | 4.1               | 29                |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|--|
| 103 | Effects of hydrogen and FeNiB/EAl2O3 on the hydroconversion of extraction residue from Geting bituminous coal in cyclohexane. <i>Fuel Processing Technology</i> , <b>2016</b> , 152, 310-315                                                          | 7.2               | 6                 |  |
| 102 | Removal of hexavalent chromium from aqueous solution by calcined Zn/Al-LDHs. <i>Water Science and Technology</i> , <b>2016</b> , 74, 229-35                                                                                                           | 2.2               | 7                 |  |
| 101 | Characterization of Oxygenates in Zhundong Subbituminous Coal by Gas Chromatography/Mass Spectrometry. <i>Analytical Letters</i> , <b>2016</b> , 49, 1359-1365                                                                                        | 2.2               | 2                 |  |
| 100 | A highly active solid acid for specifically catalyzing di(1-naphthyl)methane hydrocracking in cyclohexane. <i>Fuel Processing Technology</i> , <b>2016</b> , 142, 258-263                                                                             | 7.2               | 18                |  |
| 99  | Chitosan grafted with a heteropolyanion-based ionic liquid as an effective and reusable catalyst for acetalization. <i>RSC Advances</i> , <b>2016</b> , 6, 41404-41409                                                                                | 3.7               | 7                 |  |
| 98  | Investigation on the structural features of Zhundong subbituminous coal through ruthenium ion-catalyzed oxidation. <i>RSC Advances</i> , <b>2016</b> , 6, 11952-11958                                                                                 | 3.7               | 11                |  |
| 97  | Complete hydrocracking of dibenzyl ether over a solid acid under mild conditions. <i>Fuel</i> , <b>2016</b> , 183, 531                                                                                                                                | -5 <del>3</del> 6 | 16                |  |
| 96  | Characterization of condensed aromatics and heteroatomic species in Yanshan petroleum coke through ruthenium ion-catalyzed oxidation using three mass spectrometers. <i>RSC Advances</i> , <b>2016</b> , 6, 61                                        | 7 <i>5</i> 8-61   | 17 <del>7</del> 0 |  |
| 95  | Oxidation of Lingwu coal extraction residue in aqueous sodium hypochlorite under mild conditions. <i>Transactions of Tianjin University</i> , <b>2015</b> , 21, 19-25                                                                                 | 2.9               | 4                 |  |
| 94  | Characterization of Volatiles in Coal Tar Pitch by Gas Chromatography/Mass Spectrometry and Atmospheric Pressure Solid Analysis Probe/Time of Flight-Mass Spectrometry. <i>Analytical Letters</i> , <b>2015</b> , 48, 955-965                         | 2.2               | 4                 |  |
| 93  | Molecular characterization of heteroatomic compounds in a high-temperature coal tar using three mass spectrometers. <i>Fuel Processing Technology</i> , <b>2015</b> , 138, 65-73                                                                      | 7.2               | 47                |  |
| 92  | Investigation on compositional and structural features of Xianfeng lignite through sequential thermal dissolution. <i>Fuel Processing Technology</i> , <b>2015</b> , 138, 125-132                                                                     | 7.2               | 34                |  |
| 91  | Analysis of extractable basic nitrogen compounds in Buliangou subbituminous coal by positive-ion ESI FT-ICR MS. <i>Fuel</i> , <b>2015</b> , 159, 385-391                                                                                              | 7.1               | 25                |  |
| 90  | Identification of basic nitrogen compounds in ethanol-soluble portion from Zhaotong lignite ethanolysis by positive-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. <i>Fuel</i> , <b>2015</b> , 141, 268-274 | 7.1               | 40                |  |
| 89  | Sequential extraction and thermal dissolution of Shengli lignite. <i>Fuel Processing Technology</i> , <b>2015</b> , 135, 20-24                                                                                                                        | 7.2               | 26                |  |
| 88  | Molecular characteristics of a Chinese coal analyzed using mass spectrometry with various ionization modes. <i>Fuel</i> , <b>2015</b> , 155, 122-127                                                                                                  | 7.1               | 18                |  |
| 87  | Nitrogen-doped porous carbon foams prepared from mesophase pitch through graphitic carbon nitride nanosheet templates. <i>RSC Advances</i> , <b>2015</b> , 5, 45718-45724                                                                             | 3.7               | 19                |  |

| 86             | Insight into the structural features of Zhaotong lignite using multiple techniques. Fuel, 2015, 153, 176-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 <del>8</del> 2í            | 145          |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------|
| 85             | Characterization of Extracts from Geting Bituminous Coal. <i>Analytical Letters</i> , <b>2015</b> , 48, 1494-1501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.2                          | 4            |
| 84             | Multifunctional and highly active Ni/microfiber attapulgite for catalytic hydroconversion of model compounds and coal tars. <i>Fuel Processing Technology</i> , <b>2015</b> , 134, 39-45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.2                          | 29           |
| 83             | Facile and scalable synthesis of coal tar-derived, nitrogen and sulfur-codoped carbon nanotubes with superior activity for O2 reduction by employing an evocating agent. <i>Journal of Materials Chemistry A</i> , <b>2015</b> , 3, 22723-22729                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13                           | 14           |
| 82             | Advances in Lignite Extraction and Conversion under Mild Conditions. <i>Energy &amp; Description</i> 29, 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6 <b>9</b> <sub>1</sub> .688 | <b>36</b> 75 |
| 81             | Sulfur-containing species in the extraction residue from Xianfeng lignite characterized by X-ray photoelectron spectrometry and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. <i>RSC Advances</i> , <b>2015</b> , 5, 7125-7130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.7                          | 28           |
| 80             | A highly active Ni/mesoporous attapulgite for hydrocracking CO bonds in rice straw. <i>Fuel Processing Technology</i> , <b>2015</b> , 131, 376-381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.2                          | 22           |
| 79             | Catalytic hydroconversion of Geting bituminous coal over FeNiB/EAl2O3. <i>Fuel Processing Technology</i> , <b>2015</b> , 133, 195-201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.2                          | 25           |
| 78             | Structural Characterization of Typical Organic Species in Jincheng No. 15 Anthracite. <i>Energy &amp; Energy &amp; Energy</i> | 4.1                          | 43           |
| 77             | Isolation and Identification of Two Novel Condensed Aromatic Lactones from Zhundong Subbituminous Coal. <i>Energy &amp; Energy</i> & 2014, 28, 7394-7397                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.1                          | 5            |
| 76             | Enrichment and Identification of Arylhopanes from Shengli Lignite. Energy & Enrichment and Identification of Arylhopanes from Shengli Lignite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -6 <b>7.4</b> 8              | 23           |
| 75             | Decomposition of NOx Precursors during Gasification of Wet and Dried Pig Manures and Their Composts over Ni-based Catalysts. <i>Energy &amp; Description</i> 28, 2014, 28, 2041-2046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.1                          | 20           |
| 74             | Characterization of Oxygen-Containing Species in Methanolysis Products of the Extraction Residue from Xianfeng Lignite with Negative-Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy &amp; Damp; Fuels</i> , <b>2014</b> , 28, 5596-5605                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.1                          | 54           |
| 73             | Characterization of acidic species in ethanol-soluble portion from Zhaotong lignite ethanolysis by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. <i>Fuel Processing Technology</i> , <b>2014</b> , 128, 297-302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.2                          | 47           |
| 7 <sup>2</sup> | Synthesis of Nano-Sized Zirconia Ceramics via a Preceramic Polymer Method. <i>Refractories and Industrial Ceramics</i> , <b>2014</b> , 55, 63-66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.1                          | 1            |
| 71             | Comparative study on the pyrolysis behaviors of corn stalk and pine sawdust using TG-MS. <i>Transactions of Tianjin University</i> , <b>2014</b> , 20, 91-96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.9                          | 3            |
| 7°             | Deep hydrogenation of coal tar over a Ni/ZSM-5 catalyst. <i>RSC Advances</i> , <b>2014</b> , 4, 17105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.7                          | 39           |
| 69             | Alkanolysis simulation of lignite-related model compounds using density functional theory. <i>Fuel</i> , <b>2014</b> , 120, 158-162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.1                          | 18           |

| 68 | Catalytic hydroconversion of extraction residue from Shengli lignite over FeB/ZSM-5. <i>Fuel Processing Technology</i> , <b>2014</b> , 126, 131-137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.2               | 23  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----|
| 67 | Characterization of organonitrogen species in Xianfeng lignite by sequential extraction and ruthenium ion-catalyzed oxidation. <i>Fuel Processing Technology</i> , <b>2014</b> , 126, 199-206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.2               | 48  |
| 66 | Insight into the structural features of macromolecular aromatic species in Huolinguole lignite through ruthenium ion-catalyzed oxidation. <i>Fuel</i> , <b>2014</b> , 128, 231-239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.1               | 48  |
| 65 | Characterization of Zhundong subbituminous coal by time-of-flight mass spectrometry equipped with atmospheric pressure photoionization ion source. <i>Fuel Processing Technology</i> , <b>2014</b> , 117, 60-65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.2               | 33  |
| 64 | Evaluation of the Oxidation of Rice Husks with Sodium Hypochlorite Using Gas Chromatography-Mass Spectrometry and Direct Analysis in Real Time-Mass Spectrometry. <i>Analytical Letters</i> , <b>2014</b> , 47, 77-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.2               | 12  |
| 63 | Analysis of Geting Bituminous Coal by Electrospray Ionization and Direct Analysis in Real Time Mass Spectrometry. <i>Analytical Letters</i> , <b>2014</b> , 47, 2012-2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.2               | 20  |
| 62 | Analysis of the Products from the Oxidation of Geting Bituminous Coal by Atmospheric Pressure Photoionization Mass Spectrometry. <i>Analytical Letters</i> , <b>2014</b> , 47, 958-969                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.2               | 7   |
| 61 | Mechanical, morphological, and thermal properties of (thermoplastic polyurethane)/(chlorinated polyethylene) blends. <i>Journal of Vinyl and Additive Technology</i> , <b>2013</b> , 19, 192-197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                 | 6   |
| 60 | A Highly Active Ni/ZSM-5 Catalyst for Complete Hydrogenation of Polymethylbenzenes. <i>ChemCatChem</i> , <b>2013</b> , 5, 3543-3547                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.2               | 36  |
| 59 | Mild oxidation of Jincheng NO. 15 anthracite. <i>Journal of Fuel Chemistry and Technology</i> , <b>2013</b> , 41, 819-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>25</b> 8       | 7   |
| 58 | Application of gas chromatography/mass spectrometry in studies on separation and identification of organic species in coals. <i>Fuel</i> , <b>2013</b> , 109, 28-32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.1               | 68  |
| 57 | An efficient and convenient one-pot multicomponent synthesis of novel pyrimidine derivatives: N-(4-aryl-6-(pyridin-2-yl)pyrimidin-2-yl)cyanamides. <i>Research on Chemical Intermediates</i> , <b>2013</b> , 39, 1907-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 <del>3</del> 76 | 2   |
| 56 | Investigation on structural features of Shengli lignite through oxidation under mild conditions. <i>Fuel</i> , <b>2013</b> , 109, 316-324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.1               | 87  |
| 55 | Practical Preparation of Trimethoprim: A Classical Antibacterial Agent. <i>Synthetic Communications</i> , <b>2013</b> , 43, 1517-1522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.7               | 8   |
| 54 | Application of supported metallic catalysts in catalytic hydrogenation of arenes. <i>RSC Advances</i> , <b>2013</b> , 3, 14219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.7               | 64  |
| 53 | Nitrogen transformations during fast pyrolysis of sewage sludge. <i>Fuel</i> , <b>2013</b> , 104, 1-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.1               | 170 |
| 52 | Characterizations of the Extracts from Geting Bituminous Coal by Spectrometries. <i>Energy &amp; Energy &amp; En</i> | 4.1               | 57  |
| 51 | Structural Features of Extraction Residues from Supercritical Methanolysis of Two Chinese Lignites. <i>Energy &amp; Damp; Fuels</i> , <b>2013</b> , 27, 4632-4638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.1               | 41  |

| 50 | An efficient and facile synthesis of novel substituted pyrimidine derivatives: 4-amino-5-carbonitrile-2-nitroaminopyrimidine. <i>Research on Chemical Intermediates</i> , <b>2012</b> , 38, 2435-244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 <sup>2.8</sup>              | 11  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----|
| 49 | ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Lignite Depolymerization in Supercritical Methanol with Lignite-Related Model Compounds. <i>Energy &amp; Energy &amp; </i>                                 | 4.1                           | 29  |
| 48 | Separation of acearylenes from high-temperature coal tar. <i>Transactions of Tianjin University</i> , <b>2012</b> , 18, 378-383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.9                           | 6   |
| 47 | Preparation and characterization of cationic PLGA-PEGLf/DOPE nanoparticles for HO-1 gene delivery. <i>Journal Wuhan University of Technology, Materials Science Edition</i> , <b>2012</b> , 27, 217-221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                             |     |
| 46 | A new solid acid for specifically cleaving the CarCalk bond in di(1-naphthyl)methane. <i>Applied Catalysis A: General</i> , <b>2012</b> , 425-426, 79-84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.1                           | 33  |
| 45 | Difference in chemical composition of supercritical methanolysis products between two lignites. <i>Applied Energy</i> , <b>2011</b> , 88, 4570-4576                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.7                          | 68  |
| 44 | Sequential Thermal Dissolution of Huolinguole Lignite in Methanol and Ethanol. <i>Energy &amp; Energy &amp; Ener</i> | 4.1                           | 130 |
| 43 | GC/MS analyses of fractionated extraction of Yima coal with CS2, petroleum ether, benzene <b>2011</b> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               | 1   |
| 42 | Conversion of Dagang Vacuum Residue into Oxygen-Containing Organic Compounds by Photo-Oxidation withH2O2overTiO2. <i>International Journal of Photoenergy</i> , <b>2011</b> , 2011, 1-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.1                           | 2   |
| 41 | Studies on Copper(II) Perchlorate Complex with Tripod Ligand Tris(2-benzimidazolylmethyl)amine. <i>Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry</i> , <b>2010</b> , 40, 821-825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |     |
| 40 | Isolation and Identification of Methyl Alkanoates from Lingwu Coal. Energy & Damp; Fuels, 2010, 24, 2784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -2 <sub>4</sub> 7 <u>-</u> 86 | 21  |
| 39 | Synthesis, Crystal Structure, and Properties of a Novel Copper(II) Complex with the Tripod Ligand Tris(2-benzimidazolylmethyl)amine. <i>Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry</i> , <b>2010</b> , 40, 563-568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |     |
| 38 | A study on the catalytic performance of Pd/EAl2O3, prepared by microwave calcination, in the direct synthesis of dimethylether. <i>Frontiers of Chemical Engineering in China</i> , <b>2010</b> , 4, 452-456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               | 1   |
| 37 | Isolation and Identification of Two Bis(2-ethylheptyl) Benzenedicarboxylates from Lingwu Coal. <i>Energy &amp; Energy &amp; Energy</i>         | 4.1                           | 24  |
| 36 | Extraction of Organonitrogen Compounds from Five Chinese Coals with Methanol#. <i>Energy &amp; Energy &amp; Ener</i> | 4.1                           | 76  |
| 35 | Microwave-Assisted Hydrogen Transfer to Anthracene and Phenanthrene over Pd/C. <i>Energy &amp; Energy &amp; Ener</i> | 4.1                           | 26  |
| 34 | Selective Hydrogen Transfer to Anthracene and Its Derivatives over an Activated Carbon. <i>Energy &amp; Energy Enels</i> , <b>2009</b> , 23, 4877-4882                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.1                           | 18  |
| 33 | Hollow zeolite structures formed by crystallization in crosslinked polyacrylamide hydrogels. <i>Journal of Materials Chemistry</i> , <b>2008</b> , 18, 3337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               | 56  |

| 32 | FACILE SYNTHESIS OF ANXIOLYTIC BUSPIRONE. <i>Organic Preparations and Procedures International</i> , <b>2008</b> , 40, 391-394                                                                                                              | 1.1                     | 3  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----|
| 31 | Ruthenium Ion-Catalyzed Oxidation of Shenfu Coal and Its Residues. <i>Energy &amp; amp; Fuels</i> , <b>2008</b> , 22, 1799                                                                                                                  | -4.806                  | 69 |
| 30 | An evidence for the strong association of N-methyl-2-pyrrolidinone with some organic species in three Chinese bituminous coals. <i>Science Bulletin</i> , <b>2008</b> , 53, 1157-1164                                                       | 10.6                    | 18 |
| 29 | GC/MS analyses of fractionated extraction of Shenfu coal with CS2, n-hexane, benzene. <i>Science in China Series A: Mathematics</i> , <b>2008</b> , 14, 672-674                                                                             |                         | 4  |
| 28 | Study Demonstrating Enhanced Oxidation Stability when Arylamine Antioxidants are Combined with Organic Molybdenum Complexes. <i>Tribology Transactions</i> , <b>2007</b> , 50, 205-210                                                      | 1.8                     | 3  |
| 27 | Identification of Octathiocane, Organonitrogens, and Organosulfurs in Tongchuan Shale. <i>Energy</i> & Samp; Fuels, <b>2007</b> , 21, 1193-1194                                                                                             | 4.1                     | 10 |
| 26 | Identification of Organic Chlorines and Iodines in the Extracts from Hydrotreated Argonne Premium Coal Residues. <i>Energy &amp; Dog Name (Note of Section 2007)</i> , 21, 2238-2239                                                        | 4.1                     | 27 |
| 25 | A new synthesis method for benzo[f]quinolin-3-carbonyl urea and thiourea derivatives in aqueous media catalyzed by TEBAC. <i>Journal of Heterocyclic Chemistry</i> , <b>2007</b> , 44, 441-447                                              | 1.9                     | 4  |
| 24 | SOLID-PHASE SYNTHESIS OF DIFLUOROBENZIMIDAZOLES AND DIFLUORO-2-QUINOXALINOLS.<br>Organic Preparations and Procedures International, <b>2007</b> , 39, 591-602                                                                               | 1.1                     | 1  |
| 23 | A clean synthesis of polyhydroacridine and indenoquinoline derivatives catalyzed by triethylbenzylammonium chloride in aqueous media. <i>Journal of Heterocyclic Chemistry</i> , <b>2006</b> , 43, 989-99                                   | <b>5</b> <sup>1.9</sup> | 15 |
| 22 | A Convenient and Clean Procedure for the Synthesis of Pyran Derivatives in Aqueous Media Catalysed by Tebac. <i>Journal of Chemical Research</i> , <b>2006</b> , 2006, 228-230                                                              | 0.6                     | 11 |
| 21 | An improved synthesis of reduced 9-arylacridine-1,8-diones from<br>3-amino-5,5-dimethylcyclohex-2-enone, arylaldehydes and 1,3-dicarbonyl compounds in aqueous<br>medium. <i>Journal of Chemical Research</i> , <b>2006</b> , 2006, 719-721 | 0.6                     | 5  |
| 20 | Synthesis of 5,7-Diarylpyrido[2,3-d]Pyrimidine Derivatives catalysed by Kf-Alumina. <i>Journal of Chemical Research</i> , <b>2006</b> , 2006, 440-442                                                                                       | 0.6                     | 0  |
| 19 | Crystal Structure of 7-(4-Fluorophenyl)-5,6,7,14-tetrahydroquinolino[4,3-b]-benzo[f]quinolin-6-one N,N-Dimethylformamide Solvate. <i>Analytical Sciences: X-ray Structure Analysis Online</i> , <b>2006</b> , 22, X125-X12                  | 6                       |    |
| 18 | The hydrogen bonding in 2-amino-3-cyano-4-(3-nitrophenyl)-4,6-dihydro-5H-pyrano[3,2-c]quinolin-5-one N,N-dimethylformamide solvate monohydrate. <i>Journal of Chemical Crystallography</i> , <b>2006</b> , 36, 697-701                      | 0.5                     | 2  |
| 17 | Desulfurization of Coal by Pyrolysis and Hydropyrolysis with Addition of KOH/NaOH. <i>Energy &amp; amp; Fuels</i> , <b>2005</b> , 19, 1673-1678                                                                                             | 4.1                     | 32 |
| 16 | The crystal structure and unclassical pyran conformation of 2-amino-7-methyl-4-(3-nitrophenyl)-5-oxo-4H,5H-pyran [4,3-b]pyran-3-carbonitrile. <i>Journal of Chemical Research</i> , <b>2005</b> , 2005, 775-777                             | 0.6                     |    |
| 15 | The structure of 2-amino-3-cyano-4-(4-methylphenyl)-6-methoxyl-1,4,9,10-tetrahydrobenzo[f]chromene. <i>Journal of Chemical Crystallography</i> , <b>2005</b> , 35, 243-247                                                                  | 0.5                     | 2  |

| 14 | Unclassical hydrogen bonds of C聞?sO and C聞?sN in the crystals of 2-amino-3-cyano-4-(3,4-dichlorophenyl)-5-oxo-1,4,5,6-tetrahydro-4H-pyrano[2,3-d]pyrimidine. <i>Journal of Chemical Crystallography</i> , <b>2005</b> , 35, 999-1004 | 0.5               | 2  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----|
| 13 | One Pot Three Component Synthesis of 9-arylpolyhydroacridine Derivatives in an Ionic Liquid Medium. <i>Journal of Chemical Research</i> , <b>2005</b> , 2005, 600-602                                                                | 0.6               | 28 |
| 12 | Identification of organochlorines and organobromines in coals. Fuel, 2004, 83, 2435-2438                                                                                                                                             | 7.1               | 71 |
| 11 | Influence of Mineral Matters on the Calorific Value of an Anthracite under Oxygen Bomb Conditions. <i>Energy &amp; Documents</i> 2004, 18, 1883-1887                                                                                 | 4.1               | 4  |
| 10 | ALTERNATIVE SYNTHESIS OF N,N?-DJPHENYLTHIOUREA AND ITS ANALYSIS BY LC-MS. <i>Organic Preparations and Procedures International</i> , <b>2003</b> , 35, 409-411                                                                       | 1.1               | 1  |
| 9  | A Facile and Efficient Synthesis of Ultraviolet Absorber 3-Dihexylaminoallylidenemalononitrile. <i>Synthetic Communications</i> , <b>2003</b> , 33, 367-371                                                                          | 1.7               | 3  |
| 8  | Convenient synthesis ofn-methylpyrrolidine-2-thione and some thioamides. <i>Korean Journal of Chemical Engineering</i> , <b>2003</b> , 20, 235-238                                                                                   | 2.8               | 11 |
| 7  | Reaction of Di(1-naphthyl)methane over Metals and MetalBulfur Systems. <i>Energy &amp; Description</i> 2003, 17, 652-657                                                                                                             | 4.1               | 45 |
| 6  | Improved Synthesis of Vitamin K1. Synthetic Communications, 2003, 33, 763-772                                                                                                                                                        | 1.7               | 6  |
| 5  | EFFICIENT AND CONVENIENT SYNTHESIS OF 3,4,5-TRIMETHOXYBENZALDEHYDE FROM p-CRESOL. <i>Synthetic Communications</i> , <b>2002</b> , 32, 2809-2814                                                                                      | 1.7               | 7  |
| 4  | Advances in the study of hydrogen transfer to model compounds for coal liquefaction. <i>Fuel Processing Technology</i> , <b>2000</b> , 62, 103-107                                                                                   | 7.2               | 49 |
| 3  | Reaction of N-Methyl-2-pyrrolidinone with Carbon Disulfide. <i>Energy &amp; amp; Fuels</i> , <b>2000</b> , 14, 734-735                                                                                                               | 4.1               | 17 |
| 2  | Effects of iron catalyst precursors, sulfur, hydrogen pressure and solvent type on the hydrocracking of di(1-naphthyl)methane. <i>Fuel</i> , <b>1993</b> , 72, 1547-1552                                                             | 7.1               | 38 |
| 1  | Catalyses of Fe and FeS2on the Reaction of Di(1-naphthyl)methane. <i>Chemistry Letters</i> , <b>1991</b> , 20, 2199-2                                                                                                                | .2 <del>0.7</del> | 33 |