Haidong Shao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1007966/publications.pdf

Version: 2024-02-01

65 papers

6,196 citations

101384 36 h-index 58 g-index

66 all docs

66
docs citations

66 times ranked 2842 citing authors

#	Article	IF	CITATIONS
1	Modified Deep Autoencoder Driven by Multisource Parameters for Fault Transfer Prognosis of Aeroengine. IEEE Transactions on Industrial Electronics, 2022, 69, 845-855.	5.2	114
2	Motor Fault Diagnosis Based on Scale Invariant Image Features. IEEE Transactions on Industrial Informatics, 2022, 18, 1605-1617.	7.2	27
3	Modified Gaussian convolutional deep belief network and infrared thermal imaging for intelligent fault diagnosis of rotor-bearing system under time-varying speeds. Structural Health Monitoring, 2022, 21, 339-353.	4.3	47
4	Enhanced periodic mode decomposition and its application to composite fault diagnosis of rolling bearings. ISA Transactions, 2022, 125, 474-491.	3.1	23
5	Graph Cardinality Preserved Attention Network for Fault Diagnosis of Induction Motor Under Varying Speed and Load Condition. IEEE Transactions on Industrial Informatics, 2022, 18, 3702-3712.	7.2	23
6	Modified Stacked Autoencoder Using Adaptive Morlet Wavelet for Intelligent Fault Diagnosis of Rotating Machinery. IEEE/ASME Transactions on Mechatronics, 2022, 27, 24-33.	3.7	108
7	High-accuracy gearbox health state recognition based on graph sparse random vector functional link network. Reliability Engineering and System Safety, 2022, 218, 108187.	5.1	4
8	Unsupervised domain-share CNN for machine fault transfer diagnosis from steady speeds to time-varying speeds. Journal of Manufacturing Systems, 2022, 62, 186-198.	7.6	147
9	Ramanujan Fourier Mode Decomposition and Its Application in Gear Fault Diagnosis. IEEE Transactions on Industrial Informatics, 2022, 18, 6079-6088.	7.2	17
10	A Fusion CWSMM-Based Framework for Rotating Machinery Fault Diagnosis Under Strong Interference and Imbalanced Case. IEEE Transactions on Industrial Informatics, 2022, 18, 5180-5189.	7.2	69
11	End-to-end chiller fault diagnosis using fused attention mechanism and dynamic cross-entropy under imbalanced datasets. Building and Environment, 2022, 212, 108821.	3.0	20
12	Highly Efficient Fault Diagnosis of Rotating Machinery Under Time-Varying Speeds Using LSISMM and Small Infrared Thermal Images. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 7328-7340.	5.9	103
13	Multi-mode data augmentation and fault diagnosis of rotating machinery using modified ACGAN designed with new framework. Advanced Engineering Informatics, 2022, 52, 101552.	4.0	132
14	Multivariate local characteristic-scale decomposition and 1.5-dimensional empirical envelope spectrum based gear fault diagnosis. Mechanism and Machine Theory, 2022, 172, 104772.	2.7	15
15	Semi-supervised fault diagnosis of machinery using LPS-DGAT under speed fluctuation and extremely low labeled rates. Advanced Engineering Informatics, 2022, 53, 101648.	4.0	22
16	Novel Joint Transfer Network for Unsupervised Bearing Fault Diagnosis From Simulation Domain to Experimental Domain. IEEE/ASME Transactions on Mechatronics, 2022, 27, 5254-5263.	3.7	140
17	Clustering-Guided Novel Unsupervised Domain Adversarial Network for Partial Transfer Fault Diagnosis of Rotating Machinery. IEEE Sensors Journal, 2022, 22, 14387-14396.	2.4	14
18	Intelligent Process Monitoring of Laser-Induced Graphene Production With Deep Transfer Learning. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-9.	2.4	8

#	Article	IF	Citations
19	Intelligent Fault Diagnosis of Rotor-Bearing System Under Varying Working Conditions With Modified Transfer Convolutional Neural Network and Thermal Images. IEEE Transactions on Industrial Informatics, 2021, 17, 3488-3496.	7.2	251
20	Ensemble deep transfer learning driven by multisensor signals for the fault diagnosis of bevel-gear cross-operation conditions. Science China Technological Sciences, 2021, 64, 481-492.	2.0	26
21	Motor fault diagnosis using attention mechanism and improved adaboost driven by multi-sensor information. Measurement: Journal of the International Measurement Confederation, 2021, 170, 108718.	2.5	66
22	Symplectic weighted sparse support matrix machine for gear fault diagnosis. Measurement: Journal of the International Measurement Confederation, 2021, 168, 108392.	2.5	58
23	Novel multi-scale dilated CNN-LSTM for fault diagnosis of planetary gearbox with unbalanced samples under noisy environment. Measurement Science and Technology, 2021, 32, 124002.	1.4	23
24	A Stacked GRU-RNN-Based Approach for Predicting Renewable Energy and Electricity Load for Smart Grid Operation. IEEE Transactions on Industrial Informatics, 2021, 17, 7050-7059.	7.2	141
25	A novel approach of multisensory fusion to collaborative fault diagnosis in maintenance. Information Fusion, 2021, 74, 65-76.	11.7	156
26	Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning. Reliability Engineering and System Safety, 2021, 215, 107938.	5.1	156
27	End-to-end unsupervised fault detection using a flow-based model. Reliability Engineering and System Safety, 2021, 215, 107805.	5.1	16
28	Multi-sensor gearbox fault diagnosis by using feature-fusion covariance matrix and multi-Riemannian kernel ridge regression. Reliability Engineering and System Safety, 2021, 216, 108018.	5.1	39
29	Fault Diagnosis of a Rotor-Bearing System Under Variable Rotating Speeds Using Two-Stage Parameter Transfer and Infrared Thermal Images. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-11.	2.4	33
30	Gearbox Fault Diagnosis using Novel Dilated CNN and Piecewise Loss Function under Unbalanced Data. , 2021, , .		1
31	Rotating Machinery Fault Classification using IWGAN-GP and Small Gray Images., 2021,,.		0
32	Unsupervised Domain-shared Convolutional Neural Network for Bearing Fault Transfer Diagnosis. , 2021, , .		1
33	Interturn Short Circuit Fault Diagnosis of Brushless DC Motor Based on Image Feature Extraction and Transfer Learning. , 2021, , .		1
34	Enhanced deep gated recurrent unit and complex wavelet packet energy moment entropy for early fault prognosis of bearing. Knowledge-Based Systems, 2020, 188, 105022.	4.0	114
35	Intelligent Fault Diagnosis of Rolling Bearing Using Adaptive Deep Gated Recurrent Unit. Neural Processing Letters, 2020, 51, 1165-1184.	2.0	21
36	Support tensor machine with dynamic penalty factors and its application to the fault diagnosis of rotating machinery with unbalanced data. Mechanical Systems and Signal Processing, 2020, 141, 106441.	4.4	51

3

#	Article	IF	CITATIONS
37	Transfer fault diagnosis of bearing installed in different machines using enhanced deep auto-encoder. Measurement: Journal of the International Measurement Confederation, 2020, 152, 107393.	2.5	146
38	Deep transfer multi-wavelet auto-encoder for intelligent fault diagnosis of gearbox with few target training samples. Knowledge-Based Systems, 2020, 191, 105313.	4.0	165
39	An intelligent fault diagnosis method for rotor-bearing system using small labeled infrared thermal images and enhanced CNN transferred from CAE. Advanced Engineering Informatics, 2020, 46, 101150.	4.0	63
40	Ensemble transfer CNNs driven by multi-channel signals for fault diagnosis of rotating machinery cross working conditions. Knowledge-Based Systems, 2020, 207, 106396.	4.0	173
41	Kernel flexible and displaceable convex hull based tensor machine for gearbox fault intelligent diagnosis with multi-source signals. Measurement: Journal of the International Measurement Confederation, 2020, 163, 107965.	2.5	16
42	Intelligent fault diagnosis among different rotating machines using novel stacked transfer auto-encoder optimized by PSO. ISA Transactions, 2020, 105, 308-319.	3.1	81
43	Compound fault diagnosis for a rolling bearing using adaptive DTCWPT with higher order spectra. Quality Engineering, 2020, 32, 342-353.	0.7	11
44	A novelty detection scheme for rolling bearing based on multiscale fuzzy distribution entropy and hybrid kernel convex hull approximation. Measurement: Journal of the International Measurement Confederation, 2020, 156, 107589.	2.5	12
45	Intelligent Fault Diagnosis of Bearing Using Enhanced Deep Transfer Auto-encoder. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2020, 56, 84.	0.7	9
46	Comparison Research of Feature Fusion Methods in Characterizing Performance Degradation of Aeroengine. , 2020, , .		0
47	Improved Deep Transfer Auto-Encoder for Fault Diagnosis of Gearbox Under Variable Working Conditions With Small Training Samples. IEEE Access, 2019, 7, 115368-115377.	2.6	83
48	An optimal variational mode decomposition for rolling bearing fault feature extraction. Measurement Science and Technology, 2019, 30, 055004.	1.4	33
49	Rolling bearing health prognosis using a modified health index based hierarchical gated recurrent unit network. Mechanism and Machine Theory, 2019, 133, 229-249.	2.7	83
50	A novel tracking deep wavelet auto-encoder method for intelligent fault diagnosis of electric locomotive bearings. Mechanical Systems and Signal Processing, 2018, 110, 193-209.	4.4	84
51	Rolling bearing fault detection using continuous deep belief network with locally linear embedding. Computers in Industry, 2018, 96, 27-39.	5.7	147
52	Intelligent fault diagnosis of rolling bearings using an improved deep recurrent neural network. Measurement Science and Technology, 2018, 29, 065107.	1.4	123
53	A novel method for intelligent fault diagnosis of rolling bearings using ensemble deep auto-encoders. Mechanical Systems and Signal Processing, 2018, 102, 278-297.	4.4	345
54	Intelligent fault diagnosis of rolling bearing using deep wavelet auto-encoder with extreme learning machine. Knowledge-Based Systems, 2018, 140, 1-14.	4.0	245

#	Article	IF	CITATIONS
55	Electric Locomotive Bearing Fault Diagnosis Using a Novel Convolutional Deep Belief Network. IEEE Transactions on Industrial Electronics, 2018, 65, 2727-2736.	5.2	352
56	Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing. Mechanical Systems and Signal Processing, 2018, 100, 743-765.	4.4	304
57	Unsupervised Feature Learning of Gearbox Fault Using Stacked Wavelet Auto-encoder. , 2018, , .		0
58	A feature fusion deep belief network method for intelligent fault diagnosis of rotating machinery. Journal of Intelligent and Fuzzy Systems, 2018, 34, 3513-3521.	0.8	27
59	Rolling bearing fault diagnosis using adaptive deep belief network with dual-tree complex wavelet packet. ISA Transactions, 2017, 69, 187-201.	3.1	234
60	An adaptive deep convolutional neural network for rolling bearing fault diagnosis. Measurement Science and Technology, 2017, 28, 095005.	1.4	117
61	A novel deep autoencoder feature learning method for rotating machinery fault diagnosis. Mechanical Systems and Signal Processing, 2017, 95, 187-204.	4.4	500
62	An enhancement deep feature fusion method for rotating machinery fault diagnosis. Knowledge-Based Systems, 2017, 119, 200-220.	4.0	244
63	Aircraft Fault Diagnosis Based on Deep Belief Network. , 2017, , .		8
64	Rolling bearing fault identification using multilayer deep learning convolutional neural network. Journal of Vibroengineering, 2017, 19, 138-149.	0.5	25
65	Rolling bearing fault diagnosis using an optimization deep belief network. Measurement Science and Technology, 2015, 26, 115002.	1.4	379