

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1007813/publications.pdf Version: 2024-02-01

		61977	53222
103	7,449	43	85
papers	citations	h-index	g-index
111	111	111	8100
all docs	docs citations	times ranked	citing authors

Meili

#	Article	IF	CITATIONS
1	Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature, 1999, 402, 393-395.	27.8	1,342
2	Macroscopic Foamâ€Like Holey Ultrathin g ₃ N ₄ Nanosheets for Drastic Improvement of Visibleâ€Light Photocatalytic Activity. Advanced Energy Materials, 2016, 6, 1601273.	19.5	466
3	Interfacial assembly of protein–polymer nano-conjugates into stimulus-responsive biomimetic protocells. Nature Communications, 2013, 4, 2239.	12.8	418
4	Molecule-Based Magnetic Nanoparticles:  Synthesis of Cobalt Hexacyanoferrate, Cobalt Pentacyanonitrosylferrate, and Chromium Hexacyanochromate Coordination Polymers in Water-in-Oil Microemulsions. Nano Letters, 2002, 2, 225-229.	9.1	246
5	Electrostatically gated membrane permeability in inorganic protocells. Nature Chemistry, 2013, 5, 529-536.	13.6	238
6	Predatory behaviour in synthetic protocell communities. Nature Chemistry, 2017, 9, 110-119.	13.6	237
7	Emergence of Morphological Complexity in BaSO4Fibers Synthesized in AOT Microemulsions. Langmuir, 2000, 16, 7088-7094.	3.5	197
8	Design and Construction of Higher-Order Structure and Function in Proteinosome-Based Protocells. Journal of the American Chemical Society, 2014, 136, 9225-9234.	13.7	164
9	Synthetic cellularity based on non-lipid micro-compartments and protocell models. Current Opinion in Chemical Biology, 2014, 22, 1-11.	6.1	153
10	Programmed assembly of synthetic protocells into thermoresponsive prototissues. Nature Materials, 2018, 17, 1145-1153.	27.5	151
11	Phagocytosis-inspired behaviour in synthetic protocell communities of compartmentalized colloidal objects. Nature Materials, 2017, 16, 857-863.	27.5	121
12	Hierarchical Proteinosomes for Programmed Release of Multiple Components. Angewandte Chemie - International Edition, 2016, 55, 7095-7100.	13.8	116
13	Spontaneous assembly of chemically encoded two-dimensional coacervate droplet arrays by acoustic wave patterning. Nature Communications, 2016, 7, 13068.	12.8	116
14	Chemical Signaling and Functional Activation in Colloidosome-Based Protocells. Small, 2016, 12, 1920-1927.	10.0	107
15	Influence of surfactant assembly on the formation of calcium phosphate materials—A model for dental enamel formation. Journal of Materials Chemistry, 2005, 15, 3317.	6.7	105
16	Enzyme-mediated nitric oxide production in vasoactive erythrocyte membrane-enclosed coacervate protocells. Nature Chemistry, 2020, 12, 1165-1173.	13.6	101
17	In vitro gene expression and enzyme catalysis in bio-inorganic protocells. Chemical Science, 2011, 2, 1739.	7.4	99
18	Hierarchical Selfâ€assembly of Microscale Cogâ€like Superstructures for Enhanced Performance in Lithiumâ€lon Batteries. Advanced Functional Materials, 2011, 21, 3516-3523.	14.9	98

#	Article	IF	CITATIONS
19	Membrane-mediated cascade reactions by enzyme–polymer proteinosomes. Chemical Communications, 2014, 50, 6278-6280.	4.1	95
20	A General and Mild Approach to Controllable Preparation of Manganeseâ€Based Micro―and Nanostructured Bars for High Performance Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2016, 55, 3667-3671.	13.8	89
21	Spatial Positioning and Chemical Coupling in Coacervateâ€inâ€Proteinosome Protocells. Angewandte Chemie - International Edition, 2019, 58, 9120-9124.	13.8	89
22	Creating superhydrophobic surfaces with flowery structures on nickel substrates through a wet-chemical-process. Journal of Materials Chemistry, 2007, 17, 4772.	6.7	88
23	A Generalized Mechanism for Ligandâ€Induced Dipolar Assembly of Plasmonic Gold Nanoparticle Chain Networks. Advanced Functional Materials, 2011, 21, 851-859.	14.9	82
24	Chemical communication in spatially organized protocell colonies and protocell/living cell micro-arrays. Chemical Science, 2019, 10, 9446-9453.	7.4	82
25	Giant Coacervate Vesicles As an Integrated Approach to Cytomimetic Modeling. Journal of the American Chemical Society, 2021, 143, 2866-2874.	13.7	82
26	Spontaneous Growth and Division in Selfâ€Reproducing Inorganic Colloidosomes. Small, 2014, 10, 3291-3298.	10.0	80
27	Antagonistic chemical coupling in self-reconfigurable host–guest protocells. Nature Communications, 2018, 9, 3652.	12.8	80
28	Templateâ€Directed Synthesis of Nanoplasmonic Arrays by Intracrystalline Metalization of Crossâ€Linked Lysozyme Crystals. Angewandte Chemie - International Edition, 2010, 49, 520-523.	13.8	75
29	Selective Uptake and Refolding of Globular Proteins in Coacervate Microdroplets. Langmuir, 2016, 32, 5881-5889.	3.5	74
30	Morphological control of BaSO4microstructures by double hydrophilic block copolymer mixtures. Journal of Materials Chemistry, 2004, 14, 2269-2276.	6.7	70
31	Artificial morphogen-mediated differentiation in synthetic protocells. Nature Communications, 2019, 10, 3321.	12.8	64
32	Higher-order assembly of crystalline cylindrical micelles into membrane-extendable colloidosomes. Nature Communications, 2017, 8, 426.	12.8	62
33	Polymerâ€Mediated Synthesis of Ferritinâ€Encapsulated Inorganic Nanoparticles. Small, 2007, 3, 1477-1481.	10.0	61
34	Additive-Mediated Crystallization of Complex Calcium Carbonate Superstructures in Reverse Microemulsions. Chemistry of Materials, 2006, 18, 3557-3561.	6.7	59
35	DNA-directed assembly of multifunctional nanoparticle networks using metallic and bioinorganic building blocks. Journal of Materials Chemistry, 2004, 14, 2260.	6.7	57
36	Cytoskeletalâ€like Supramolecular Assembly and Nanoparticleâ€Based Motors in a Model Protocell. Angewandte Chemie - International Edition, 2011, 50, 9343-9347.	13.8	57

#	Article	IF	CITATIONS
37	Multimodal plasmonics in fused colloidal networks. Nature Materials, 2015, 14, 87-94.	27.5	57
38	Superhydrophobic surface created by the silver mirror reaction and its drag-reduction effect on water. Journal of Materials Chemistry, 2009, 19, 3301.	6.7	51
39	Autonomic Behaviors in Lipaseâ€Active Oil Droplets. Angewandte Chemie - International Edition, 2019, 58, 1067-1071.	13.8	50
40	Artificial Cytoskeletal Structures Within Enzymatically Active Bioâ€inorganic Protocells. Small, 2013, 9, 357-362.	10.0	49
41	Photosynthetic hydrogen production by droplet-based microbial micro-reactors under aerobic conditions. Nature Communications, 2020, 11, 5985.	12.8	49
42	Hydrogelâ€Immobilized Coacervate Droplets as Modular Microreactor Assemblies. Angewandte Chemie - International Edition, 2020, 59, 6853-6859.	13.8	49
43	Responseâ€Retaliation Behavior in Synthetic Protocell Communities. Angewandte Chemie - International Edition, 2019, 58, 17758-17763.	13.8	47
44	Synergistic photocatalytic performance of cobalt tetra(2-hydroxymethyl-1,4-dithiin)porphyrazine loaded on zinc oxide nanoparticles. Journal of Hazardous Materials, 2018, 359, 388-395.	12.4	46
45	Photocatalytic Oxidation of Acetone Over High Thermally Stable TiO2 Nanosheets With Exposed (001) Facets. Frontiers in Chemistry, 2018, 6, 175.	3.6	46
46	Novel Multilayer ACF@rGO@OMC Cathode Composite with Enhanced Activity for Electro-Fenton Degradation of Phthalic Acid Esters. Industrial & Engineering Chemistry Research, 2016, 55, 11085-11096.	3.7	45
47	Nonequilibrium Spatiotemporal Sensing within Acoustically Patterned Two-Dimensional Protocell Arrays. ACS Central Science, 2018, 4, 1551-1558.	11.3	42
48	Membrane Engineering of Colloidosome Microcompartments Using Partially Hydrophobic Mesoporous Silica Nanoparticles. Langmuir, 2014, 30, 15047-15052.	3.5	41
49	Ultrathin g ₃ N ₄ Nanosheets Coupled with AglO ₃ as Highly Efficient Heterostructured Photocatalysts for Enhanced Visibleâ€Light Photocatalytic Activity. Chemistry - A European Journal, 2015, 21, 17739-17747.	3.3	40
50	Cosurfactant-mediated microemulsion to free-standing hierarchical CuO arrays on copper substrates as anodes for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 14368.	10.3	39
51	Hierarchical Proteinosomes for Programmed Release of Multiple Components. Angewandte Chemie, 2016, 128, 7211-7216.	2.0	39
52	Coordinated Membrane Fusion of Proteinosomes by Contact-Induced Hydrogel Self-Healing. Small, 2017, 13, 1700467.	10.0	38
53	Polyimide surface modification by pulsed ultraviolet laser irradiation with low fluence. Journal of Applied Polymer Science, 2001, 82, 2739-2743.	2.6	37
54	Triggerable Protocell Capture in Nanoparticle-Caged Coacervate Microdroplets. Journal of the American Chemical Society, 2022, 144, 3855-3862.	13.7	37

#	Article	IF	CITATIONS
55	Modulation of Higherâ€order Behaviour in Model Protocell Communities by Artificial Phagocytosis. Angewandte Chemie - International Edition, 2019, 58, 6333-6337.	13.8	36
56	Self-Assembly of Electrically Conducting Biopolymer Thin Films by Cellulose Regeneration in Gold Nanoparticle Aqueous Dispersions. Chemistry of Materials, 2010, 22, 2675-2680.	6.7	35
57	Hydrophilic Indolium Cycloruthenated Complex System for Visual Detection of Bisulfite with a Large Red Shift in Absorption. Inorganic Chemistry, 2016, 55, 745-754.	4.0	35
58	Light-induced dynamic shaping and self-division of multipodal polyelectrolyte-surfactant microarchitectures via azobenzene photomechanics. Scientific Reports, 2017, 7, 41327.	3.3	35
59	Crystal tectonics: Chemical construction and self-organization. Dalton Transactions RSC, 2000, , 3753-3763.	2.3	34
60	Functionalized MWNTâ€Doped Thermoplastic Polyurethane Nanocomposites for Aerospace Coating Applications. Macromolecular Materials and Engineering, 2010, 295, 838-845.	3.6	34
61	Chemical-mediated translocation in protocell-based microactuators. Nature Chemistry, 2021, 13, 868-879.	13.6	34
62	Programmed assembly of multi-layered protein/nanoparticle-carbon nanotube conjugates. Chemical Communications, 2005, , 4952.	4.1	33
63	Design and construction of artificial photoresponsive protocells capable of converting day light to chemical energy. Journal of Materials Chemistry A, 2017, 5, 24612-24616.	10.3	32
64	Nanoparticle-Based Membrane Assembly and Silicification in Coacervate Microdroplets as a Route to Complex Colloidosomes. Langmuir, 2014, 30, 14591-14596.	3.5	27
65	Single-step fabrication of multi-compartmentalized biphasic proteinosomes. Chemical Communications, 2017, 53, 8537-8540.	4.1	26
66	Autonomic Behaviors in Lipaseâ€Active Oil Droplets. Angewandte Chemie, 2019, 131, 1079-1083.	2.0	24
67	Plasmonic Response of Ag―and Auâ€Infiltrated Crossâ€Linked Lysozyme Crystals. Advanced Functional Materials, 2013, 23, 281-290.	14.9	22
68	Cytotoxicity of CdTe quantum dots with different surface coatings against yeast Saccharomyces cerevisiae. Ecotoxicology and Environmental Safety, 2019, 174, 467-474.	6.0	21
69	Secretion and Reversible Assembly of Extracellular-like Matrix by Enzyme-Active Colloidosome-Based Protocells. Langmuir, 2016, 32, 2912-2919.	3.5	20
70	Lectin-Glycan-Mediated Nanoparticle Docking as a Step toward Programmable Membrane Catalysis and Adhesion in Synthetic Protocells. ACS Nano, 2020, 14, 7899-7910.	14.6	19
71	Emergent Hybrid Nanostructures Based on Nonâ€Equilibrium Block Copolymer Selfâ€Assembly. Angewandte Chemie - International Edition, 2008, 47, 9476-9479.	13.8	18
72	Hydrolysis-Coupled Redox Reaction to 3D Cu/Fe ₃ O ₄ Nanorod Array Electrodes for High-Performance Lithium-Ion Batteries. Inorganic Chemistry, 2017, 56, 7657-7667.	4.0	17

#	Article	IF	CITATIONS
73	Spatial Positioning and Chemical Coupling in Coacervateâ€inâ€Proteinosome Protocells. Angewandte Chemie, 2019, 131, 9218-9222.	2.0	17
74	Near-Infrared Fluorescent and Magnetic Resonance Dual-Imaging Coacervate Nanoprobes for Trypsin Mapping and Targeted Payload Delivery of Malignant Tumors. ACS Applied Materials & Interfaces, 2020, 12, 17302-17313.	8.0	16
75	Spontaneous Membranization in a Silkâ€Based Coacervate Protocell Model. Angewandte Chemie - International Edition, 2022, 61, .	13.8	16
76	EMI shielding effectiveness of silver nanoparticle-decorated multi-walled carbon nanotube sheets. International Journal of Smart and Nano Materials, 2010, 1, 249-260.	4.2	15
77	Fabrication of polypyrrole nano-arrays in lysozyme single crystals. Nanoscale, 2012, 4, 6710.	5.6	15
78	Modulation of Higherâ€order Behaviour in Model Protocell Communities by Artificial Phagocytosis. Angewandte Chemie, 2019, 131, 6399-6403.	2.0	15
79	Programmable Membrane-Mediated Attachment of Synthetic Virus-like Nanoparticles on Artificial Protocells for Enhanced Immunogenicity. Cell Reports Physical Science, 2021, 2, 100291.	5.6	15
80	Synthesis of cerium/cobalt phosphate nanostructures in catanionic reverse micelles. Soft Matter, 2006, 2, 603.	2.7	14
81	The differential effect of apoferritin-PbS nanocomposites on cell cycle progression in normal and cancerous cells. Journal of Materials Chemistry, 2012, 22, 660-665.	6.7	14
82	Bioactive Hybrid Organogels Based on Miniemulsion Synthesis of Morphologically Complex Polymer/Surfactant/Calcium Phosphate Nanostructures. Chemistry of Materials, 2014, 26, 5965-5972.	6.7	14
83	Inorganic Self-Assembled Bioactive Artificial Proto-Osteocells Inducing Bone Regeneration. ACS Applied Materials & Interfaces, 2018, 10, 10718-10728.	8.0	14
84	Calcium sulfate hemihydrate-mediated crystallization of gypsum on Ca ²⁺ -activated cellulose thin films. CrystEngComm, 2013, 15, 3793-3798.	2.6	12
85	Responseâ€Retaliation Behavior in Synthetic Protocell Communities. Angewandte Chemie, 2019, 131, 17922-17927.	2.0	12
86	In situ precipitation of amorphous and crystalline calcium sulphates in cellulose thin films. CrystEngComm, 2014, 16, 3843-3847.	2.6	10
87	Facile Microwaveâ€Assisted Synthesis of Concave Octahedral Ptâ^'Cu Alloy Nanocrystals and their Electrocatalytic Properties. ChemNanoMat, 2018, 4, 909-913.	2.8	10
88	Self-immobilization of coacervate droplets by enzyme-mediated hydrogelation. Chemical Communications, 2021, 57, 5438-5441.	4.1	9
89	Protocells self-assembled by hydroxyapatite nanoparticles: Highly efficient and selective enrichment of chlorophenols in an aqueous environment. Chemosphere, 2019, 233, 1-8.	8.2	8
90	Conductive Agâ€Based Modification of Hydroxyapatite Microtubule Array and Its Application to Enzymeâ€Free Glucose Sensing. ChemistrySelect, 2018, 3, 2542-2547.	1.5	7

#	Article	IF	CITATIONS
91	PREPARATION OF TIN OXIDE NANOPARTICLES BY LASER ABLATION IN SOLUTION. International Journal of Nanoscience, 2006, 05, 259-264.	0.7	6
92	Endowing Zeolite LTA Superballs with the Ability to Manipulate Light in Multiple Ways. Angewandte Chemie - International Edition, 2020, 59, 19684-19690.	13.8	6
93	Fabrication of photoluminescent hybrid protein crystals of lysozyme and bromophenol blue. Journal of Materials Science, 2015, 50, 7026-7030.	3.7	5
94	A General and Mild Approach to Controllable Preparation of Manganeseâ€Based Micro―and Nanostructured Bars for High Performance Lithiumâ€Ion Batteries. Angewandte Chemie, 2016, 128, 3731-3735.	2.0	5
95	Electrochemical crystallization of spatially organized copper microwire arrays within biomineralized (dentine) templates. CrystEngComm, 2013, 15, 7152.	2.6	3
96	Lithium-Ion Batteries: Hierarchical Self-assembly of Microscale Cog-like Superstructures for Enhanced Performance in Lithium-Ion Batteries (Adv. Funct. Mater. 18/2011). Advanced Functional Materials, 2011, 21, 3398-3398.	14.9	2
97	Spontaneous Membranization in a Silkâ€Based Coacervate Protocell Model. Angewandte Chemie, 2022, 134, .	2.0	2
98	Innentitelbild: Cytoskeletal-like Supramolecular Assembly and Nanoparticle-Based Motors in a Model Protocell (Angew. Chem. 40/2011). Angewandte Chemie, 2011, 123, 9380-9380.	2.0	1
99	Inside Cover: Cytoskeletal-like Supramolecular Assembly and Nanoparticle-Based Motors in a Model Protocell (Angew. Chem. Int. Ed. 40/2011). Angewandte Chemie - International Edition, 2011, 50, 9214-9214.	13.8	1
100	Rücktitelbild: Autonomic Behaviors in Lipaseâ€Active Oil Droplets (Angew. Chem. 4/2019). Angewandte Chemie, 2019, 131, 1232-1232.	2.0	0
101	Endowing Zeolite LTA Superballs with the Ability to Manipulate Light in Multiple Ways. Angewandte Chemie, 2020, 132, 19852-19858.	2.0	0
102	Hydrogelâ€Immobilized Coacervate Droplets as Modular Microreactor Assemblies. Angewandte Chemie, 2020, 132, 6920-6926.	2.0	0
103	Innentitelbild: Hydrogelâ€Immobilized Coacervate Droplets as Modular Microreactor Assemblies (Angew. Chem. 17/2020). Angewandte Chemie, 2020, 132, 6698-6698.	2.0	0