Antonio Pedro Aguiar

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1007519/antonio-pedro-aguiar-publications-by-year.pdf

Version: 2024-04-28

230

ext. papers

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

207 3,166 26 papers citations h-index

3,938

ext. citations

3.3

avg, IF

L-index

g-index

#	Paper	IF	Citations
207	A Secure Federated Deep Learning-Based Approach for Heating Load Demand Forecasting in Building Environment. <i>IEEE Access</i> , 2022 , 10, 5037-5050	3.5	1
206	Three Dimensional Moving Path Following Control for Robotic Vehicles With Minimum Positive Forward Speed 2022 , 6, 79-84		
205	An overview of structural systems theory. <i>Automatica</i> , 2022 , 140, 110229	5.7	O
204	A Path-Following Controller for Marine Vehicles Using a Two-Scale Inner-Outer Loop Approach. <i>Sensors</i> , 2022 , 22, 4293	3.8	O
203	Robust Path-Following Control of Underactuated Marine Vehicles Using Gradient-Descent Fuzzy Estimation. <i>Lecture Notes in Electrical Engineering</i> , 2022 , 37-47	0.2	
202	Cooperative Path Following with Collision Avoidance Guarantees Using Control Lyapunov and Barrier Functions. <i>Lecture Notes in Electrical Engineering</i> , 2022 , 181-193	0.2	
201	On the Use of a Maximum Correntropy Criterion in Kalman Filtering Based Strategies for Robot Localization and Mapping. <i>Lecture Notes in Electrical Engineering</i> , 2021 , 548-558	0.2	
200	Direct Power Control of a Doubly Fed Induction Generator Using a Lyapunov Based State Space Approach. <i>Lecture Notes in Electrical Engineering</i> , 2021 , 628-637	0.2	
199	Accelerated Generalized Correntropy Interior Point Method in Power System State Estimation. Lecture Notes in Electrical Engineering, 2021, 658-667	0.2	O
198	Image Processing Based Approach for False Data Injection Attacks Detection in Power Systems. <i>IEEE Access</i> , 2021 , 1-1	3.5	2
197	Distributed LQ Control of a Water Delivery Canal Based on a Selfish Game. <i>Lecture Notes in Electrical Engineering</i> , 2021 , 466-476	0.2	O
196	Online Range-Based SLAM Using B-Spline Surfaces. <i>IEEE Robotics and Automation Letters</i> , 2021 , 6, 1958-	-149265	3
195	Structurally quotient fixed modes. Systems and Control Letters, 2021, 151, 104914	2.4	
194	Control Barrier Function-Based Quadratic Programs Introduce Undesirable Asymptotically Stable Equilibria 2021 , 5, 731-736		10
193	A Distributed Luenberger Observer for Linear State Feedback Systems With Quantized and Rate-Limited Communications. <i>IEEE Transactions on Automatic Control</i> , 2021 , 66, 3922-3937	5.9	O
192	. IEEE Journal of Oceanic Engineering, 2021 , 1-14	3.3	1
191	An Unmanned Aircraft System for Maritime Operations: The Automatic Detection Subsystem. <i>Marine Technology Society Journal</i> , 2021 , 55, 38-49	0.5	2

190	On Incremental Structure from Motion Using Lines. IEEE Transactions on Robotics, 2021, 1-16	6.5	
189	Deep Learning-Assisted Short-Term Load Forecasting for Sustainable Management of Energy in Microgrid. <i>Inventions</i> , 2021 , 6, 15	2.9	12
188	Distributed Inverse Optimal Control for Discrete-Time Nonlinear Multi-Agent Systems 2021 , 5, 2096-21	01	2
187	Turn-to-Turn Short Circuit Fault Localization in Transformer Winding via Image Processing and Deep Learning Method. <i>IEEE Transactions on Industrial Informatics</i> , 2021 , 1-1	11.9	5
186	Multi-agent detection and labelling of activity patterns. <i>Signal, Image and Video Processing</i> , 2020 , 14, 1207-1215	1.6	0
185	Constrained Hopping Traversability Analysis on Non-Uniform Polygonal Chains. <i>IEEE Access</i> , 2020 , 8, 36	6 9 .1 , -36	57 0 1
184	Finite-dimensional control of linear discrete-time fractional-order systems. <i>Automatica</i> , 2020 , 115, 108	5152 ₇	5
183	A DFIG-based Wind Turbine Operation under Balanced and Unbalanced Grid Voltage Conditions. <i>IFAC-PapersOnLine</i> , 2020 , 53, 12835-12840	0.7	2
182	An Optimization-Based Cooperative Path-Following Framework for Multiple Robotic Vehicles. <i>IEEE Transactions on Control of Network Systems</i> , 2020 , 7, 1002-1014	4	3
181	Active Depth Estimation: Stability Analysis and its Applications 2020,		1
180	Distributed state estimation for discrete-time linear time invariant systems: A survey. <i>Annual Reviews in Control</i> , 2019 , 48, 36-56	10.3	12
179	Selective strong structural minimum-cost resilient co-design for regular descriptor linear systems. <i>Automatica</i> , 2019 , 102, 80-85	5.7	9
178	Corrigendum to Belective strong structural minimum-cost resilient co-design for regular descriptor linear systems[[Automatica 102 (2019) 8085]. <i>Automatica</i> , 2019 , 107, 612	5.7	
177	Robust Moving Path Following Control for Robotic Vehicles: Theory and Experiments. <i>IEEE Robotics and Automation Letters</i> , 2019 , 4, 3192-3199	4.2	14
176	A Framework for Depth Estimation and Relative Localization of Ground Robots using Computer Vision 2019 ,		3
175	Robust Cooperative Moving Path Following Control for Marine Robotic Vehicles. <i>Frontiers in Robotics and AI</i> , 2019 , 6, 121	2.8	1
174	Modelling, Control and Performance Evaluation of an AC/DC Microgrid 2019,		1
173	Cooperative Path Following of Robotic Vehicles Using an Event-Based Control and Communication Strategy. <i>IEEE Robotics and Automation Letters</i> , 2018 , 3, 1941-1948	4.2	25

172	Moving Path Following Control of Constrained Underactuated Vehicles: A Nonlinear Model Predictive Control Approach 2018 ,		8
171	Low-Level Active Visual Navigation: Increasing Robustness of Vision-Based Localization Using Potential Fields. <i>IEEE Robotics and Automation Letters</i> , 2018 , 3, 2079-2086	4.2	11
170	Structurally Observable Distributed Networks of Agents Under Cost and Robustness Constraints. <i>IEEE Transactions on Signal and Information Processing Over Networks</i> , 2018 , 4, 236-247	2.8	9
169	. IEEE Transactions on Aerospace and Electronic Systems, 2018 , 54, 834-847	3.7	26
168	Feature Based Potential Field for Low-Level Active Visual Navigation. <i>Advances in Intelligent Systems and Computing</i> , 2018 , 791-800	0.4	1
167	Coordinated Multi-UAV Exploration Strategy for Large Areas with Communication Constrains. <i>Advances in Intelligent Systems and Computing</i> , 2018 , 149-160	0.4	
166	A Nonlinear Model Predictive Control for an AUV to Track and Estimate a Moving Target Using Range Measurements. <i>Advances in Intelligent Systems and Computing</i> , 2018 , 161-170	0.4	1
165	A Model Predictive Cloud-Based Control Scheme for Trajectory-Tracking: Effects of Round-Trip Time Over-Estimates 2018 ,		1
164	A coverage planner for AUVs using B-splines 2018 ,		1
163	A B-Spline Mapping Framework for Long-Term Autonomous Operations 2018 ,		2
162	Cooperative Moving Path Following Using Event Based Control and Communication 2018,		3
161	An unmanned aircraft system for maritime operations: The sense and avoid subsystem with software-in-the-loop evaluation. <i>International Journal of Advanced Robotic Systems</i> , 2018 , 15, 1729881	41 <mark>87</mark> 86	533
160	Composability and controllability of structural linear time-invariant systems: Distributed verification. <i>Automatica</i> , 2017 , 78, 123-134	5.7	30
159	An Input-to-State-Stability Approach to Economic Optimization in Model Predictive Control. <i>IEEE Transactions on Automatic Control</i> , 2017 , 62, 6081-6093	5.9	17
158	The robust minimal controllability problem. <i>Automatica</i> , 2017 , 82, 261-268	5.7	25
157	Constrained Optimal Motion Planning for Autonomous Vehicles Using PRONTO. <i>Lecture Notes in Control and Information Sciences</i> , 2017 , 207-226	0.5	4
156	Three dimensional moving path following for fixed-wing unmanned aerial vehicles 2017,		5
155	Self-triggered cooperative path following control of fixed wing Unmanned Aerial Vehicles 2017,		6

154	A fault detection and isolation scheme for formation control of fixed-wing UAVs 2017,		2
153	VirtualArena: An object-oriented MATLAB toolkit for control system design and simulation 2017,		8
152	A feedback motion strategy applied to a UAV to work as an autonomous relay node for maritime operations 2017 ,		7
151	Icing detection and identification for unmanned aerial vehicles using adaptive nested multiple models. <i>International Journal of Adaptive Control and Signal Processing</i> , 2017 , 31, 1584-1607	2.8	7
150	Benchmarking IoT middleware platforms 2017 ,		9
149	A distributed Model Predictive Control scheme for coordinated output regulation * *This work was partially supported by FCT R&D Unit SYSTEC - POCI-01-0145-FEDER-006933/SYSTEC funded by ERDFIOMPETE2020ECT/MECPT2020 and project STRIDE - NORTE-01-0145-FEDER-000033,	0.7	3
148	A planar path-following model predictive controller for fixed-wing Unmanned Aerial Vehicles 2017,		4
147	2017,		2
146	2017,		1
145	A design method for distributed luenberger observers 2017 ,		5
145	A design method for distributed luenberger observers 2017 , A Sampled-Data Model Predictive Framework for Cooperative Path Following of Multiple Robotic Vehicles. <i>Lecture Notes in Control and Information Sciences</i> , 2017 , 473-494	0.5	3
	A Sampled-Data Model Predictive Framework for Cooperative Path Following of Multiple Robotic	o.5 5.9	
144	A Sampled-Data Model Predictive Framework for Cooperative Path Following of Multiple Robotic Vehicles. <i>Lecture Notes in Control and Information Sciences</i> , 2017 , 473-494 A Framework for Structural Input/Output and Control Configuration Selection in Large-Scale		3
144	A Sampled-Data Model Predictive Framework for Cooperative Path Following of Multiple Robotic Vehicles. <i>Lecture Notes in Control and Information Sciences</i> , 2017 , 473-494 A Framework for Structural Input/Output and Control Configuration Selection in Large-Scale Systems. <i>IEEE Transactions on Automatic Control</i> , 2016 , 61, 303-318 Range-Based Underwater Vehicle Localization in the Presence of Unknown Ocean Currents: Theory	5.9	3
144 143 142	A Sampled-Data Model Predictive Framework for Cooperative Path Following of Multiple Robotic Vehicles. <i>Lecture Notes in Control and Information Sciences</i> , 2017 , 473-494 A Framework for Structural Input/Output and Control Configuration Selection in Large-Scale Systems. <i>IEEE Transactions on Automatic Control</i> , 2016 , 61, 303-318 Range-Based Underwater Vehicle Localization in the Presence of Unknown Ocean Currents: Theory and Experiments. <i>IEEE Transactions on Control Systems Technology</i> , 2016 , 24, 122-139	5.9	3 121 65
144 143 142	A Sampled-Data Model Predictive Framework for Cooperative Path Following of Multiple Robotic Vehicles. Lecture Notes in Control and Information Sciences, 2017, 473-494 A Framework for Structural Input/Output and Control Configuration Selection in Large-Scale Systems. IEEE Transactions on Automatic Control, 2016, 61, 303-318 Range-Based Underwater Vehicle Localization in the Presence of Unknown Ocean Currents: Theory and Experiments. IEEE Transactions on Control Systems Technology, 2016, 24, 122-139 A convoy protection strategy using the moving path following method 2016,	5·9 4.8	3 121 65 5
144 143 142 141	A Sampled-Data Model Predictive Framework for Cooperative Path Following of Multiple Robotic Vehicles. Lecture Notes in Control and Information Sciences, 2017, 473-494 A Framework for Structural Input/Output and Control Configuration Selection in Large-Scale Systems. IEEE Transactions on Automatic Control, 2016, 61, 303-318 Range-Based Underwater Vehicle Localization in the Presence of Unknown Ocean Currents: Theory and Experiments. IEEE Transactions on Control Systems Technology, 2016, 24, 122-139 A convoy protection strategy using the moving path following method 2016, . IEEE Control Systems, 2016, 36, 59-82 Moving Path Following for Unmanned Aerial Vehicles With Applications to Single and Multiple	5.9 4.8 2.9	 3 121 65 5 25

136	Optimal UAV Rendezvous on a UGV 2016 ,		6
135	Adaptive Sampling Using an Unsupervised Learning of GMMs Applied to a Fleet of AUVs with CTD Measurements. <i>Advances in Intelligent Systems and Computing</i> , 2016 , 321-332	0.4	1
134	Minimum cost input/output design for large-scale linear structural systems. <i>Automatica</i> , 2016 , 68, 384-	3 9 .17	41
133	On convergence and performance certification of a continuous-time economic model predictive control scheme with time-varying performance index. <i>Automatica</i> , 2016 , 68, 305-313	5.7	24
132	Second-Order-Optimal Minimum-Energy Filters on Lie Groups. <i>IEEE Transactions on Automatic Control</i> , 2016 , 61, 2906-2919	5.9	12
131	. IEEE Transactions on Control Systems Technology, 2016 , 24, 867-883	4.8	38
130	On the design of discrete-time Economic Model Predictive Controllers 2016 ,		4
129	An algorithm for formation-based chemical plume tracing using robotic marine vehicles 2016 ,		1
128	Towards 3-D distributed odor source localization: An extended graph-based formation control algorithm for plume tracking 2016 ,		12
127	Design of a distributed quantized luenberger filter for bounded noise 2016 ,		4
126	Time-Critical Cooperative Path Following of Multiple UAVs: Case Studies 2015, 209-233		6
125	Observability analysis of 3D AUV trimming trajectories in the presence of ocean currents using range and depth measurements. <i>Annual Reviews in Control</i> , 2015 , 40, 142-156	10.3	14
124	Icing detection and identification for unmanned aerial vehicles: Multiple model adaptive estimation 2015 ,		17
123	A distributed formation-based odor source localization algorithm - design, implementation, and wind tunnel evaluation 2015 ,		13
122	Comparison between the mineral profile and nitrate content of microgreens and mature lettuces. Journal of Food Composition and Analysis, 2015, 37, 38-43	4.1	79
121	On the complexity of the constrained input selection problem for structural linear systems. <i>Automatica</i> , 2015 , 62, 193-199	5.7	38
120	A virtual target approach for trajectory optimization of a general class of constrained vehicles 2015 ,		3
119	Analysis and design of electric power grids with p-robustness guarantees using a structural hybrid system approach 2015 ,		4

118	A consensus algorithm for networks with process noise and quantization error 2015,		3
117	An energy efficient trajectory tracking controller for car-like vehicles using Model Predictive Control 2015 ,		4
116	2015,		10
115	Cooperative Path Following of Multiple Multirotors Over Time-Varying Networks. <i>IEEE Transactions on Automation Science and Engineering</i> , 2015 , 12, 945-957	4.9	37
114	A Model predictive control scheme with ultimate bound for economic optimization 2015,		7
113	2015,		4
112	Cooperative path-following for multirotor UAVs with a suspended payload 2015,		13
111	An Optimization-Based Framework for Impulsive Control Systems. <i>Lecture Notes in Control and Information Sciences</i> , 2015 , 277-300	0.5	3
110	Trajectory optimization for constrained UAVs: A Virtual Target Vehicle approach 2015,		18
109	A Model Predictive Control-Based Architecture for Cooperative Path-Following of Multiple Unmanned Aerial Vehicles. <i>Lecture Notes in Control and Information Sciences</i> , 2015 , 141-160	0.5	6
108	A Decentralized Strategy for Multirobot Sampling/Patrolling: Theory and Experiments. <i>IEEE Transactions on Control Systems Technology</i> , 2015 , 23, 313-322	4.8	13
107	Unsupervised Learning of Gaussian Mixture Models in the Presence of Dynamic Environments. <i>Lecture Notes in Electrical Engineering</i> , 2015 , 387-396	0.2	1
106	Optimization Based Control for Target Estimation and Tracking via Highly Observable Trajectories. <i>Lecture Notes in Electrical Engineering</i> , 2015 , 495-504	0.2	6
105	On the Linearization Up to Multi-Output Injection for a Class of Systems With Implicitly Defined Outputs. <i>IEEE Transactions on Automatic Control</i> , 2014 , 59, 1310-1315	5.9	
104	Underwater localization and mapping: observability analysis and experimental results. <i>Industrial Robot</i> , 2014 , 41, 213-224	1.4	4
103	Automatic bottom-following for underwater robotic vehicles. <i>Automatica</i> , 2014 , 50, 2155-2162	5.7	18
102	Observability Analysis of 3D AUV Trimming Trajectories in the Presence of Ocean Currents using Single Beacon Navigation. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2014 , 47, 4222-4227		6
101	Flexible triangular formation keeping of marine robotic vehicles using range measurements 1. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2014 , 47, 5145-5150		2

100	Towards efficient mobile M2M communications: survey and open challenges. <i>Sensors</i> , 2014 , 14, 19582-698	65
99	FVMS Software-in-the-Loop Flight Simulation Experiments: Guidance, Navigation and Control 2014,	3
98	2014,	23
97	An economic model predictive control scheme with terminal penalty for continuous-time systems 2014 ,	6
96	Minimum number of information gatherers to ensure full observability of a dynamic social network: A structural systems approach 2014 ,	11
95	2014,	7
94	Adaptive leader-follower formation control of autonomous marine vehicles 2014,	2
93	Design and Implementation of a Range-Based Formation Controller for Marine Robots. <i>Advances in Intelligent Systems and Computing</i> , 2014 , 55-67	2
92	Optimal Control on Lie Groups: The Projection Operator Approach. <i>IEEE Transactions on Automatic Control</i> , 2013 , 58, 2230-2245	36
91	Time-Critical Cooperative Path Following of Multiple Unmanned Aerial Vehicles over Time-Varying Networks. <i>Journal of Guidance, Control, and Dynamics</i> , 2013 , 36, 499-516	66
90	Joint ASV/AUV range-based formation control: Theory and experimental results 2013,	21
89	An Observability Metric for Underwater Vehicle Localization Using Range Measurements. <i>Sensors</i> , 2013 , 13, 16191-16215	28
88	Dynamic Load Allocation for Multi-Homing via Coded Packets 2013,	4
87	A Model Predictive Control scheme with additional performance index for transient behavior 2013,	7
86	Cooperative AUV motion planning using terrain information 2013,	8
85	A framework for actuator placement in large scale power systems: Minimal strong structural controllability 2013 ,	8
84	A structured systems approach for optimal actuator-sensor placement in linear time-invariant systems 2013 ,	35
83	Second-order-optimal filters on Lie groups 2013 ,	8

82	2013,	7
81	A model checking framework for linear time invariant switching systems using structural systems analysis 2013 ,	7
80	A Packet Loss Compliant Logic-Based Communication Algorithm for Cooperative Path-Following Control. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 262-267	4
79	Covariant differentiation of a map in the context of geometric optimal control. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2013 , 46, 499-505	
78	Four-Quadrant Propeller Modeling: A Low-Order Harmonic Approximation. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2013 , 46, 161-166	
77	Observability analysis of 2D single beacon navigation in the presence of constant currents for two classes of maneuvers. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2013 , 46, 227-232	6
76	Designing Decentralized Control Systems without Structural Fixed Modes: A Multilayer Approach*. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2013 , 46, 81-88	2
75	Minimum Robust Sensor Placement for Large Scale Linear Time-Invariant Systems: A Structured Systems Approach*. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2013 , 46, 417-424	9
74	AUV range-only localization and mapping: Observer design and experimental results 2013,	7
73	Multiple-model adaptive state estimation of the HIV-1 infection using a moving horizon approach 2013 ,	1
72	Optimal cost actuator/sensor placement for large scale linear time-invariant systems: A structured systems approach 2013 ,	3
71	Moving path following for autonomous robotic vehicles 2013,	7
70	Multiple Model Adaptive Estimation for open loop unstable plants 2013,	3
69	Trajectory-tracking and path-following controllers for constrained underactuated vehicles using Model Predictive Control 2013 ,	26
68	Target tracking of autonomous robotic vehicles using range-only measurements: a switched logic-based control strategy. <i>International Journal of Robust and Nonlinear Control</i> , 2012 , 22, 1983-1998 ^{3.6}	14
67	Multiple model adaptive wave filtering for dynamic positioning of marine vessels 2012,	26
66	A Lyapunov-based approach for Time-Coordinated 3D Path-Following of multiple quadrotors 2012 ,	12
65	Constrained motion planning for multiple vehicles on SE(3) 2012 ,	7

64	A new approach to multi-robot harbour patrolling: Theory and experiments 2012,		12
63	An Underwater Acoustic Localisation System for Assisted Human Diving Operations. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2012 , 45, 206-211		6
62	Triangular formation control using range measurements: An application to marine robotic vehicles. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2012 , 45, 112-117		11
61	Observability Analysis for AUV Range-only Localization and Mapping Measures of Unobservability and Experimental Results. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2012 , 45, 325-330		4
60	Cooperative Motion Planning for Multiple Autonomous Marine Vehicles. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2012 , 45, 244-249		8
59	Obstacle detection from overhead imagery using self-supervised learning for Autonomous Surface Vehicles 2011 ,		1
58	A Switched Based Control Strategy for Target Tracking of Autonomous Robotic Vehicles using Range-only Measurements. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2011 , 44, 12819-12824		1
57	Optimal Control on Lie Groups: Implementation Details of the Projection Operator Approach. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2011 , 44, 14567-14572		1
56	An Exponential Observer for Systems on SE(3) with Implicit Outputs. <i>Springer Proceedings in Mathematics</i> , 2011 , 611-633		3
55	2011,		3
55 54	Vision-based control for rigid body stabilization. <i>Automatica</i> , 2011 , 47, 1020-1027	5-7	3
		5-7	
54	Vision-based control for rigid body stabilization. <i>Automatica</i> , 2011 , 47, 1020-1027 Observability metric for the relative localization of AUVs based on range and depth measurements:	5-7	9
54 53	Vision-based control for rigid body stabilization. <i>Automatica</i> , 2011 , 47, 1020-1027 Observability metric for the relative localization of AUVs based on range and depth measurements: Theory and experiments 2011 ,	5.7	9
54 53 52	Vision-based control for rigid body stabilization. <i>Automatica</i> , 2011 , 47, 1020-1027 Observability metric for the relative localization of AUVs based on range and depth measurements: Theory and experiments 2011 , Lie group projection operator approach: Optimal control on T SO(3) 2011 ,	5.7	9 19 11
54 53 52 51	Vision-based control for rigid body stabilization. <i>Automatica</i> , 2011 , 47, 1020-1027 Observability metric for the relative localization of AUVs based on range and depth measurements: Theory and experiments 2011 , Lie group projection operator approach: Optimal control on T SO(3) 2011 , Seabed tracking of an autonomous underwater vehicle with nonlinear output regulation 2011 ,	5.7	9 19 11 5
54 53 52 51 50	Vision-based control for rigid body stabilization. <i>Automatica</i> , 2011 , 47, 1020-1027 Observability metric for the relative localization of AUVs based on range and depth measurements: Theory and experiments 2011 , Lie group projection operator approach: Optimal control on T SO(3) 2011 , Seabed tracking of an autonomous underwater vehicle with nonlinear output regulation 2011 , A Minimum Energy solution to Monocular Simultaneous Localization and Mapping 2011 ,	5-7	9 19 11 5 1

46	State estimation for systems on SE(3) with implicit outputs: An application to visual servoing*. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2010 , 43, 921-926		1
45	Moving Horizon Estimation with Decimated Observations *. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2010 , 43, 296-301		1
44	Cooperative Motion Control of Multiple Autonomous Marine Vehicles: Collision Avoidance in Dynamic Environments. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2010 , 43, 395-400		6
43	SLAM for an AUV using vision and an acoustic beacon. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2010 , 43, 503-508		4
42	A Multiple Model Adaptive Wave Filter for Dynamic Ship Positioning. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2010 , 43, 120-125		2
41	Nonlinear adaptive control of an underwater towed vehicle. <i>Ocean Engineering</i> , 2010 , 37, 1193-1220	3.9	24
40	On Coordinated Road Search using Time-Coordinated Path Following of Multiple UAVs 2010,		2
39	A performance based model-set design strategy for Multiple Model Adaptive Estimation 2009,		6
38	Further results on plant parameter identification using continuous-time multiple-model adaptive estimators 2009 ,		4
37	Path planning for multiple marine vehicles 2009,		5
36	A general framework for multiple vehicle time-coordinated path following control 2009,		18
35	Multiple Model Adaptive Estimation and model identification usign a Minimum Energy criterion 2009 ,		18
34	Robust filtering for deterministic systems with implicit outputs. <i>Systems and Control Letters</i> , 2009 , 58, 263-270	2.4	12
33	Coordinated Path-Following in the Presence of Communication Losses and Time Delays. <i>SIAM Journal on Control and Optimization</i> , 2009 , 48, 234-265	1.9	128
32	Cooperative Autonomous Marine Vehicle motion control in the scope of the EU GREX Project: Theory and Practice 2009 ,		22
31	Online Mission Planning for Cooperative Target Tracking of Marine Vehicles. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2009 , 42, 185-189		3
30	Single Beacon Acoustic Navigation for an AUV in the presence of unknown ocean currents. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2009 , 42, 298-303		5
29	Marine Vehicle Path Following Using Inner-Outer Loop Control. <i>IFAC Postprint Volumes IPPV /</i> International Federation of Automatic Control, 2009 , 42, 38-43		12

28	Cooperative Control of Multiple Marine Vehicles Theoretical Challenges and Practical Issues. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2009 , 42, 412-417		16
27	Temporally and Spatially Deconflicted Path Planning for Multiple Autonomous Marine Vehicles. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2009 , 42, 376-381		8
26	Nonlinear adaptive depth tracking and attitude control of an underwater towed vehicle. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2009 , 42, 211-216		5
25	A Cooperative Personal Agenda in a Collaborative Team Environment. <i>Lecture Notes in Computer Science</i> , 2009 , 193-196	0.9	
24	Time-Coordinated Path Following of Multiple UAVs over Time-Varying Networks using L1 Adaptation 2008 ,		9
23	Identification and Convergence Analysis of a Class of Continuous-Time Multiple-Model Adaptive Estimators. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2008 , 41, 8605-	8610	3
22	Cooperative Path-Following of Underactuated Autonomous Marine Vehicles with Logic-based Communication. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2008 , 41, 107-112		15
21	Performance limitations in reference tracking and path following for nonlinear systems. <i>Automatica</i> , 2008 , 44, 598-610	5.7	117
20	Zero Dynamics and Tracking Performance Limits in Nonlinear Feedback Systems 2008 , 149-159		2
19	. IEEE Transactions on Automatic Control, 2007 , 52, 1362-1379	5.9	555
18	Multiple-model adaptive estimators: Open problems and future directions 2007,		1
17	Switched seesaw control for the stabilization of underactuated vehicles. <i>Automatica</i> , 2007 , 43, 1997-20	0 §3.7	32
16	Synchronization in multi-agent systems with switching topologies and non-homogeneous communication delays 2007 ,	0§ 7	32
	Synchronization in multi-agent systems with switching topologies and non-homogeneous	0 § 7	
16	Synchronization in multi-agent systems with switching topologies and non-homogeneous communication delays 2007 , Dynamic positioning and way-point tracking of underactuated AUVs in the presence of ocean		21
16 15	Synchronization in multi-agent systems with switching topologies and non-homogeneous communication delays 2007 , Dynamic positioning and way-point tracking of underactuated AUVs in the presence of ocean currents. <i>International Journal of Control</i> , 2007 , 80, 1092-1108		21
16 15	Synchronization in multi-agent systems with switching topologies and non-homogeneous communication delays 2007, Dynamic positioning and way-point tracking of underactuated AUVs in the presence of ocean currents. <i>International Journal of Control</i> , 2007, 80, 1092-1108 2007,		21 130 4

10	. IEEE Transactions on Automatic Control, 2006 , 51, 226-241	5.9	43
9	Path-following for nonminimum phase systems removes performance limitations. <i>IEEE Transactions on Automatic Control</i> , 2005 , 50, 234-239	5.9	124
8	LIMITS OF PERFORMANCE IN REFERENCE-TRACKING AND PATH-FOLLOWING FOR NONLINEAR SYSTEMS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2005, 38, 264-26	59	5
7	State estimation for continuous-time systems with perspective outputs from discrete noisy time-delayed measurements 2004 ,		3
6	DYNAMIC POSITIONING OF AN UNDERACTUATED AUV IN THE PRESENCE OF A CONSTANT UNKNOWN OCEAN CURRENT DISTURBANCE. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2002 , 35, 283-288		3
5	Stabilization of the Extended Nonholonomic Double Integrator Via Logic-Based Hybrid Control. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2000 , 33, 351-356		8
4	Cooperative control of multiple autonomous marine vehicles: theoretical foundations and practical iss	ues255	5- <i>2</i> ₇ 82
3	State Estimation for Systems with Implicit Outputs for the Integration of Vision and Inertial Sensors		2
2	Stability of switched seesaw systems with application to the stabilization of underactuated vehicles		2
1	Regulation of a nonholonomic dynamic wheeled mobile robot with parametric modeling uncertainty using Lyapunov functions		15