Yoshiki Matsuoka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10072740/publications.pdf

Version: 2024-02-01

30 2,592 21 30 papers citations h-index g-index

30 30 30 2809 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The Hyper Suprime-Cam SSP Survey: Overview and survey design. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	566
2	Second data release of the Hyper Suprime-Cam Subaru Strategic Program. Publication of the Astronomical Society of Japan, 2019, 71, .	2.5	320
3	SUBARU HIGH-z EXPLORATION OF LOW-LUMINOSITY QUASARS (SHELLQs). I. DISCOVERY OF 15 QUASARS AND BRIGHT GALAXIES AT 5.7 < z < 6.9 < sup > â^— < /sup > â€. Astrophysical Journal, 2016, 828, 26.	4.5	164
4	Great Optically Luminous Dropout Research Using Subaru HSC (GOLDRUSH). I. UV luminosity functions at ⟨i⟩z⟨ i⟩ â^½ 4–7 derived with the half-million dropouts on the 100Âdeg2 sky. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	164
5	Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). V. Quasar Luminosity Function and Contribution to Cosmic Reionization at zÂ=Â6. Astrophysical Journal, 2018, 869, 150.	4.5	153
6	Discovery of the First Low-luminosity Quasar at zÂ>Â7. Astrophysical Journal Letters, 2019, 872, L2.	8.3	114
7	Large Population of ALMA Galaxies at zÂ>Â6 with Very High [O iii]Â88 μm to [C ii]Â158 μm Flux Ratios: Evidence of Extremely High Ionization Parameter or PDR Deficit?. Astrophysical Journal, 2020, 896, 93.	4.5	109
8	SILVERRUSH. V. Census of Lyî±, [O iii] î»5007, Hî±, and [C ii] 158 î½m Line Emission with \hat{a}^{1} /41000 LAEs at $z\hat{A}=\hat{A}4$ Revealed with Subaru/HSC. Astrophysical Journal, 2018, 859, 84.	l.9–7.0 4.5	102
9	Subaru High- <i>z</i> Exploration of Low-Luminosity Quasars (SHELLQs). II. Discovery of 32 quasars and luminous galaxies at 5.7Â<Â <i>z</i> ≤6.8. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	95
10	Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). VI. Black Hole Mass Measurements of Six Quasars at 6.1Ââ‰ x ̂2Ââ‰ x̂ 6.7. Astrophysical Journal, 2019, 880, 77.	4.5	90
11	Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). IV. Discovery of 41 Quasars and Luminous Galaxies at 5.7Ââ‰ÂzÂâ‰Â6.9. Astrophysical Journal, Supplement Series, 2018, 237, 5.	7.7	81
12	The quasar luminosity function at redshift 4 with the Hyper Suprime-Cam Wide Survey. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	74
13	Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). X. Discovery of 35 Quasars and Luminous Galaxies at 5.7 â‰ÂzÂâ‰Â7.0. Astrophysical Journal, 2019, 883, 183.	4.5	74
14	GOLDRUSH. IV. Luminosity Functions and Clustering Revealed with â ¹ /₄4,000,000 Galaxies at z â ¹ /₄ 2–7: Galaxy–AGN Transition, Star Formation Efficiency, and Implication for Evolution at z > 10. Astrophysical Journal, Supplement Series, 2022, 259, 20.	7.7	73
15	SILVERRUSH. VIII. Spectroscopic Identifications of Early Large-scale Structures with Protoclusters over 200 Mpc at zÂâ^¼Â6–7: Strong Associations of Dusty Star-forming Galaxies. Astrophysical Journal, 2019, 883, 142.	4.5	71
16	Minor Contribution of Quasars to Ionizing Photon Budget at zÂâ^1⁄4Â6: Update on Quasar Luminosity Function at the Faint End with Subaru/Suprime-Cam. Astrophysical Journal Letters, 2017, 847, L15.	8.3	57
17	Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs). VIII. A less biased view of the early co-evolution of black holes and host galaxies. Publication of the Astronomical Society of Japan, 2019, 71, .	2.5	51
18	Subaru High- <i>z</i> Exploration of Low-Luminosity Quasars (SHELLQs). III. Star formation properties of the host galaxies at <i>z</i> Â≳ 6 studied with ALMA. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	42

#	Article	IF	CITATIONS
19	Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). XIII. Large-scale Feedback and Star Formation in a Low-luminosity Quasar at $z=7.07$ on the Local Black Hole to Host Mass Relation. Astrophysical Journal, 2021, 914, 36.	4.5	37
20	The Faint End of the Quasar Luminosity Function at zÂâ^1/4Â5 from the Subaru Hyper Suprime-Cam Survey. Astrophysical Journal, 2020, 904, 89.	4.5	31
21	Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). XVI. 69 New Quasars at 5.8 < z < 7.0. Astrophysical Journal, Supplement Series, 2022, 259, 18.	7.7	25
22	SILVERRUSH X: Machine Learning-aided Selection of 9318 LAEs at $z=2.2,3.3,4.9,5.7,6.6,$ and 7.0 from the HSC SSP and CHORUS Survey Data. Astrophysical Journal, 2021, 911, 78.	4.5	18
23	Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). XI. Proximity Zone Analysis for Faint Quasar Spectra at zÂâ^1⁄4Â6. Astrophysical Journal, 2020, 903, 60.	4.5	15
24	Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). XIV. A Candidate Type II Quasar at $z=6.1292$. Astrophysical Journal, 2021, 919, 61.	4.5	14
25	SILVERRUSH. IX. Lyα Intensity Mapping with Star-forming Galaxies at $z=5.7$ and 6.6: A Possible Detection of Extended Lyα Emission at $3\%^3100$ Comoving Kiloparsecs around and beyond the Virial-radius Scale of Galaxy Dark Matter Halos. Astrophysical Journal, 2021, 916, 22.	4.5	13
26	Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). XII. Extended [C ii] Structure (Merger) Tj ETQq	0 0 _{4.5} rgBT	/Overlock 10
27	The Mean Absorption-line Spectra of a Selection of Luminous zÂâ^¼Â6 Lyman Break Galaxies. Astrophysical Journal, 2020, 902, 117.	4.5	12
28	Subaru High- $\langle i \rangle z \langle i \rangle$ Exploration of Low-Luminosity Quasars (SHELLQs). IX. Identification of two red quasars at $\langle i \rangle z \langle i \rangle$ & amp;gt; 5.6. Publication of the Astronomical Society of Japan, 2020, 72, .	2.5	10
29	Multiline Assessment of Narrow-line Regions in z $\hat{a}^{1}/4$ 3 Radio Galaxies. Astrophysical Journal, 2022, 929, 51.	4.5	4
30	Detection of Extended Millimeter Emission in the Host Galaxy of 3C 273 and Its Implications for QSO Feedback via High Dynamic Range ALMA Imaging. Astrophysical Journal, 2022, 930, 3.	4.5	1