Ryutaro Maeda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10072249/publications.pdf Version: 2024-02-01

Ρνήτλρο Μλέρλ

#	Article	IF	CITATIONS
1	Synchronous identification and successive detection of multiple traces with tunable coupling oscillators. Mechanical Systems and Signal Processing, 2022, 166, 108395.	8.0	15
2	A Low 1/f Noise Tunnel Magnetoresistance Accelerometer. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-11.	4.7	6
3	Autoparametric Internal Resonance in Coupled Oscillator: An Excitation Amplitude Insensitive Mass Sensing Scheme With a Roof Tilting. IEEE Sensors Journal, 2022, 22, 1998-2005.	4.7	7
4	Fabrication and evaluation of aluminum nitride based MEMS piezoelectric vibration sensors for large-amplitude vibration applications. Microsystem Technologies, 2021, 27, 235-242.	2.0	5
5	Noninvasive Passive Measurement of Multiphase Currents in IoT. IEEE Transactions on Industrial Electronics, 2021, 68, 12860-12870.	7.9	7
6	Developing MEMS Electric Current Sensors for End-use Monitoring of Power Supply: Part X — An IEEE802.11g Protocol Compliant Integratable Dual-frequency Coaxial Microstrip Antenna. , 2021, , .		0
7	Developing MEMS Electric Current Sensors for End-use Monitoring of Power Supply: Part XI - A Nonlinear Error Correction Scheme. , 2021, , .		Ο
8	A mass multi-warning scheme based on one-to-three internal resonance. Mechanical Systems and Signal Processing, 2020, 142, 106784.	8.0	31
9	Internal Resonance Phenomena in Coupled Ductile Cantilevers With Triple Frequency Ratio-Part II: A Mass Sensitivity Amplification Schemes. IEEE Sensors Journal, 2019, 19, 5484-5492.	4.7	18
10	A Detection Error Correction Scheme Aiming at Gradient Nonlinear Problem in Cantilever-Based Sensors. IEEE Sensors Journal, 2019, 19, 11797-11804.	4.7	5
11	Internal Resonance Phenomena in Coupled Ductile Cantilevers With Triple Frequency Ratio–Part I: Experimental Observations. IEEE Sensors Journal, 2019, 19, 5475-5483.	4.7	20
12	Development of Implantable Wireless Sensor Nodes for Animal Husbandry and MedTech Innovation. Sensors, 2018, 18, 979.	3.8	8
13	Large-scale Experiment of Power Consumption Monitoring Using Wireless Sensor Nodes. Transactions of the Society of Instrument and Control Engineers, 2016, 52, 698-706.	0.2	Ο
14	Guest Editorial Special Issue on Selected Papers From the IEEE SENSORS 2015 Conference. IEEE Sensors Journal, 2016, 16, 8671-8671.	4.7	0
15	Selective Cu Patterning on Polyimide Using UV Surface Treatment and Electroless Plating. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2015, 28, 157-161.	0.3	3
16	Multiplication in Frequencies by Synchronized and Superharmonic Oscillations: Sensing Verification With Picogram Order Microspheres. IEEE Sensors Journal, 2015, 15, 4464-4471.	4.7	19
17	Analytical study on cantilever resonance type magnet-integrated sensor device for micro-magnetic field detection. Microsystem Technologies, 2015, 21, 1167-1172.	2.0	20
18	Self-alignment observation and conductivity evaluation in micro chips integration with square binding pattern. Microsystem Technologies, 2015, 21, 1203-1208.	2.0	0

Ryutaro Maeda

#	Article	IF	CITATIONS
19	Wireless Sensor Nodes with Ultra-low Power Consumption for Low-Frequency Vibration Monitoring. IEEJ Transactions on Sensors and Micromachines, 2015, 135, 355-360.	0.1	0
20	Frontside-micromachined planar piezoresistive vibration sensor: Evaluating performance in the low frequency test range. AIP Advances, 2014, 4, 017112.	1.3	5
21	Toward the World Smallest Wireless Sensor Nodes With Ultralow Power Consumption. IEEE Sensors Journal, 2014, 14, 2035-2041.	4.7	25
22	Flexible Implantable Microtemperature Sensor Fabricated on Polymer Capillary by Programmable UV Lithography With Multilayer Alignment for Biomedical Applications. Journal of Microelectromechanical Systems, 2014, 23, 21-29.	2.5	33
23	An analytical study of the effect of a support geometry on frequency shift and support loss of piezoelectric ring-shaped resonators for healthcare and environmental applications. Microsystem Technologies, 2013, 19, 503-508.	2.0	8
24	Developing integrated piezoelectric direct current sensor with actuating and sensing elements. Micro and Nano Letters, 2013, 8, 858-860.	1.3	25
25	Passive piezoelectric single-side MEMS DC current sensor with five parallel PZT plates applicable to two-wire DC electric appliances without using cord separator. Microsystem Technologies, 2013, 19, 923-927.	2.0	29
26	Flexible integration of MEMS and IC for low-cost production of wireless sensor nodes. Microsystem Technologies, 2013, 19, 775-781.	2.0	6
27	Analytical studies on amplitude change enhancement in coupled aluminium nitride coated single crystal silicon oscillator pair applicable to ultraâ€sensitive resonating microfluidic flowmeters. Micro and Nano Letters, 2013, 8, 609-613.	1.3	9
28	Subâ€Micronâ€Wide Surficial Trench Frames to Define the Coating Areas of Sensitive Layers on Silicon <scp>MEMS</scp> Resonant Chemical Sensors. Electronics and Communications in Japan, 2013, 96, 60-66.	0.5	0
29	Cavityâ€first approach for microelectromechanical system–CMOS monolithic integration. Micro and Nano Letters, 2013, 8, 700-703.	1.3	2
30	Liftâ€off process of piezoelectric lead–zirconate–titanate thin film using selfâ€assembled monolayer as sacrificial layer. Micro and Nano Letters, 2013, 8, 138-142.	1.3	4
31	Mode localization analysis and characterization in a 5-beam array of coupled nearly identical micromechanical resonators for ultra-sensitive mass detection and analyte identification. Microsystem Technologies, 2012, 18, 1923-1929.	2.0	39
32	High-efficient and high-accurate chip to wafer bonding for size-free MEMS-IC integration by using fine patterned self-assembled monolayer. , 2012, , .		0
33	Analytical study on effect of ring geometry on frequency shift of piezoelectric ring-shaped resonator. Microsystem Technologies, 2012, 18, 773-778.	2.0	9
34	High-efficient Chip to Wafer Self-alignment and Bonding for Flexible and Size-free MEMS-IC Integration. IEEJ Transactions on Sensors and Micromachines, 2012, 132, 230-234.	0.1	2
35	Chip to wafer temporary bonding with self-alignment by patterned FDTS layer for size-free MEMS integration. , 2011, , .		4
36	A Measurement Method for the Power Generation Characteristics of Piezoelectric Elements. IEEJ Transactions on Sensors and Micromachines, 2004, 124, 30-31.	0.1	0

#	Article	IF	CITATIONS
37	PZT Film Formation with Use of Spray Coating Method. IEEJ Transactions on Sensors and Micromachines, 2003, 123, 588-589.	0.1	1