
Weiang Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10071856/publications.pdf Version: 2024-02-01

WEIANC YAN

#	Article	IF	CITATIONS
1	Long-term survival and quality of life after extracorporeal membrane oxygenation. Journal of Thoracic and Cardiovascular Surgery, 2023, 166, 555-566.e2.	0.8	10
2	Commentary: Stronger together: Interinstitutional collaboration is a key step to improving patient outcomes after contemporary extracorporeal membrane oxygenation. Journal of Thoracic and Cardiovascular Surgery, 2022, 163, 1375-1376.	0.8	0
3	Conversion of 2D MXene to Multiâ€Lowâ€Dimensional GerMXene Superlattice Heterostructure. Advanced Functional Materials, 2022, 32, 2108495.	14.9	9
4	A previously undescribed pathogenic variant in FBN1 gene causing Marfan syndrome: a case report. European Heart Journal - Case Reports, 2022, 6, ytac063.	0.6	0
5	Development of iPSC-based clinical trial selection platform for patients with ultrarare diseases. Science Advances, 2022, 8, eabl4370.	10.3	13
6	MXene-aromatic thermosetting copolyester nanocomposite as an extremely wear-resistant biocompatible implant material for osteoarthritis applications. Applied Surface Science, 2022, 600, 154124.	6.1	12
7	Commentary: Using the right tools for the job: Revisiting renal preservation during open thoracoabdominal aortic aneurysm repair. Journal of Thoracic and Cardiovascular Surgery, 2021, , .	0.8	0
8	Commentary: Adapting for our patients: Reducing intraoperative adverse events as new technologies emerge. JTCVS Techniques, 2021, 6, 88-89.	0.4	0
9	Development of Fluorineâ€Free Tantalum Carbide MXene Hybrid Structure as a Biocompatible Material for Supercapacitor Electrodes. Advanced Functional Materials, 2021, 31, 2100015.	14.9	58
10	Biocompatible Electrodes: Development of Fluorineâ€Free Tantalum Carbide MXene Hybrid Structure as a Biocompatible Material for Supercapacitor Electrodes (Adv. Funct. Mater. 30/2021). Advanced Functional Materials, 2021, 31, 2170219.	14.9	0
11	Carbon nanomaterials for cardiovascular theranostics: Promises and challenges. Bioactive Materials, 2021, 6, 2261-2280.	15.6	42
12	Fabrication of Smart Tantalum Carbide MXene Quantum Dots with Intrinsic Immunomodulatory Properties for Treatment of Allograft Vasculopathy. Advanced Functional Materials, 2021, 31, 2106786.	14.9	42
13	Current and future transcatheter aortic valve replacement valves. Current Opinion in Cardiology, 2021, Publish Ahead of Print, .	1.8	3
14	Two-year outcomes from the PARTNER 3 trial: where do we stand?. Current Opinion in Cardiology, 2021, 36, 141-147.	1.8	9
15	Fabrication of Smart Tantalum Carbide MXene Quantum Dots with Intrinsic Immunomodulatory Properties for Treatment of Allograft Vasculopathy (Adv. Funct. Mater. 46/2021). Advanced Functional Materials, 2021, 31, 2170341.	14.9	1
16	Abstract 11474: Ti ₃ C ₂ T _x MXene Nanosheets for Immunomodulation and Prevention of Allograft Vasculopathy. Circulation, 2021, 144, .	1.6	0
17	Commentary: Patient selection is key to improving postcardiotomy extracorporeal membrane oxygenation outcomes. Journal of Thoracic and Cardiovascular Surgery, 2020, 159, 1855-1856.	0.8	0
18	Sweet-MXene hydrogel with mixed-dimensional components for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 101, 103440.	3.1	43

Weiang Yan

#	Article	IF	CITATIONS
19	Bioactive and trackable MXene quantum dots for subcellular nanomedicine applications. Materials and Design, 2020, 196, 109091.	7.0	37
20	Hypoxiaâ€induced increase in Sug1 leads to poor postâ€transplantation survival of allogeneic mesenchymal stem cells. FASEB Journal, 2020, 34, 12860-12876.	0.5	10
21	The COMPASS trial: practical considerations for application after coronary artery bypass surgery. Current Opinion in Cardiology, 2020, 35, 583-588.	1.8	1
22	Hypoxiaâ€induced downregulation of cyclooxygenase 2 leads to the loss of immunoprivilege of allogeneic mesenchymal stem cells. FASEB Journal, 2020, 34, 15236-15251.	0.5	10
23	Hypoxia-induced shift in the phenotype of proteasome from 26S toward immunoproteasome triggers loss of immunoprivilege of mesenchymal stem cells. Cell Death and Disease, 2020, 11, 419.	6.3	15
24	Spinal Epidural Hematoma Secondary to Tenecteplase for ST-Elevation Myocardial Infarction in the Setting of Trauma and Cervical Endplate Fracture. CJC Open, 2020, 2, 71-73.	1.5	1
25	Quantum Dots: Application of Ti ₃ C ₂ MXene Quantum Dots for Immunomodulation and Regenerative Medicine (Adv. Healthcare Mater. 16/2019). Advanced Healthcare Materials, 2019, 8, 1970067.	7.6	8
26	Application of Ti ₃ C ₂ MXene Quantum Dots for Immunomodulation and Regenerative Medicine. Advanced Healthcare Materials, 2019, 8, e1900569.	7.6	125
27	Inflammation in myocardial injury: mesenchymal stem cells as potential immunomodulators. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H213-H225.	3.2	33
28	Hypoxia-induced 26S proteasome dysfunction increases immunogenicity of mesenchymal stem cells. Cell Death and Disease, 2019, 10, 90.	6.3	27
29	Commentary: Does valve choice matter in patients receiving hemodialysis?. Journal of Thoracic and Cardiovascular Surgery, 2019, 157, 2187-2188.	0.8	0
30	Application of injectable hydrogels for cardiac stem cell therapy and tissue engineering. Reviews in Cardiovascular Medicine, 2019, 20, 221.	1.4	25
31	Hypoxiaâ€Induced Inactivation of 26S Proteasome Increases Immunogenicity of Allogeneic Mesenchymal Stem Cells. FASEB Journal, 2019, 33, lb600.	0.5	0
32	Long-term non-institutionalized survival and rehospitalization after surgical aortic and mitral valve replacements in a large provincial cardiac surgery centre. Interactive Cardiovascular and Thoracic Surgery, 2018, 27, 131-138.	1.1	1
33	Extracorporeal membrane oxygenation before surgical repair of a postinfarction ventricular septal defect. Journal of Thoracic and Cardiovascular Surgery, 2018, 155, e121-e123.	0.8	5
34	Multimodality Imaging of a Giant Right Coronary ArteryÂAneurysm. Canadian Journal of Cardiology, 2018, 34, 1688.e5-1688.e7.	1.7	3
35	Molecular population genetics and phenotypic sensitivity to ethanol for a globally diverse sample of the nematode <i>Caenorhabditis briggsae</i> . Molecular Ecology, 2010, 19, 798-809.	3.9	37