
Shogo Mori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10070811/publications.pdf Version: 2024-02-01

SHOCO MOR

#	Article	IF	CITATIONS
1	Alkyl-Functionalized Organic Dyes for Efficient Molecular Photovoltaics. Journal of the American Chemical Society, 2006, 128, 14256-14257.	13.7	838
2	How the Nature of Triphenylamine-Polyene Dyes in Dye-Sensitized Solar Cells Affects the Open-Circuit Voltage and Electron Lifetimes. Langmuir, 2010, 26, 2592-2598.	3.5	359
3	Interfacial Electron-Transfer Kinetics in Metal-Free Organic Dye-Sensitized Solar Cells: Combined Effects of Molecular Structure of Dyes and Electrolytes. Journal of the American Chemical Society, 2008, 130, 17874-17881.	13.7	263
4	Enhancement of Incident Photon-to-Current Conversion Efficiency for Phthalocyanine-Sensitized Solar Cells by 3D Molecular Structuralization. Journal of the American Chemical Society, 2010, 132, 4054-4055.	13.7	215
5	Porphyrins for dye-sensitised solar cells: new insights into efficiency-determining electron transfer steps. Chemical Communications, 2012, 48, 4145.	4.1	215
6	Znâ^'Zn Porphyrin Dimer-Sensitized Solar Cells: Toward 3-D Light Harvesting. Journal of the American Chemical Society, 2009, 131, 15621-15623.	13.7	177
7	Highly efficient dye-sensitized SnO2 solar cells having sufficient electron diffusion length. Electrochemistry Communications, 2007, 9, 1439-1443.	4.7	172
8	Charge-Transfer Processes in Dye-Sensitized NiO Solar Cells. Journal of Physical Chemistry C, 2008, 112, 16134-16139.	3.1	164
9	Syntheses of NiO nanoporous films using nonionic triblock co-polymer templates and their application to photo-cathodes of p-type dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 199, 1-7.	3.9	150
10	Dye Molecules for Simple Coâ€Sensitization Process: Fabrication of Mixedâ€Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2012, 51, 4371-4374.	13.8	149
11	Substituted carbazole dyes for efficient molecular photovoltaics: long electron lifetime and high open circuit voltage performance. Journal of Materials Chemistry, 2009, 19, 4829.	6.7	125
12	Molecular engineering of zinc phthalocyanine sensitizers for efficient dye-sensitized solar cells. Chemical Communications, 2014, 50, 1941.	4.1	116
13	Highly stable sensitizer dyes for dye-sensitized solar cells: role of the oligothiophene moiety. Energy and Environmental Science, 2009, 2, 542.	30.8	103
14	The origin of open circuit voltage of porphyrin-sensitised TiO2 solar cells. Chemical Communications, 2008, , 4741.	4.1	97
15	Photoelectrochemical characteristics of cells with dyed and undyed nanoporous p-type semiconductor CuO electrodes. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 194, 143-147.	3.9	92
16	Nanocrystalline Electrodes Based on Nanoporous-Walled WO ₃ Nanotubes for Organic-Dye-Sensitized Solar Cells. Langmuir, 2011, 27, 12730-12736.	3.5	85
17	Exploitation of Ionic Liquid Electrolyte for Dye-Sensitized Solar Cells by Molecular Modification of Organic-Dye Sensitizers. Chemistry of Materials, 2009, 21, 2810-2816.	6.7	78
18	Molecular Design of Organic Dye toward Retardation of Charge Recombination at Semiconductor/Dye/Electrolyte Interface: Introduction of Twisted π-Linker. Journal of Physical Chemistry C, 2010, 114, 17920-17925.	3.1	73

SHOGO MORI

#	Article	IF	CITATIONS
19	Molecular Design Rule of Phthalocyanine Dyes for Highly Efficient Nearâ€IR Performance in Dyeâ€6ensitized Solar Cells. Chemistry - A European Journal, 2013, 19, 7496-7502.	3.3	73
20	Dye Aggregation Effect on Interfacial Electron-Transfer Dynamics in Zinc Phthalocyanine-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 17205-17212.	3.1	70
21	Oxidized Ti ₃ C ₂ MXene nanosheets for dye-sensitized solar cells. New Journal of Chemistry, 2018, 42, 16446-16450.	2.8	60
22	Electron-Accepting π-Conjugated Systems for Organic Photovoltaics: Influence of Structural Modification on Molecular Orientation at Donor–Acceptor Interfaces. Chemistry of Materials, 2016, 28, 1705-1713.	6.7	55
23	Coexistence of Femtosecond- and Nonelectron-Injecting Dyes in Dye-Sensitized Solar Cells: Inhomogeniety Limits the Efficiency. Journal of Physical Chemistry C, 2011, 115, 22084-22088.	3.1	53
24	Improved performance of porphyrin-based dye sensitised solar cells by phosphinic acid surface treatment. Energy and Environmental Science, 2009, 2, 1069.	30.8	49
25	Retardation of electron injection at NiO/dye/electrolyte interface by aluminium alkoxide treatment. Energy and Environmental Science, 2010, 3, 641.	30.8	48
26	Structural Effect of Donor in Organic Dye on Recombination in Dye-Sensitized Solar Cells with Cobalt Complex Electrolyte. Langmuir, 2014, 30, 2274-2279.	3.5	44
27	Light Intensity Independent Electron Transport and Slow Charge Recombination in Dye-Sensitized In ₂ O ₃ Solar Cells: In Contrast to the Case of TiO ₂ . Journal of Physical Chemistry C, 2010, 114, 13113-13117.	3.1	43
28	Recombination inhibitive structure of organic dyes for cobalt complex redox electrolytes in dye-sensitised solar cells. Journal of Materials Chemistry A, 2013, 1, 792-798.	10.3	40
29	Improvement of TiO ₂ /Dye/Electrolyte Interface Conditions by Positional Change of Alkyl Chains in Modified Panchromatic Ru Complex Dyes. Chemistry - A European Journal, 2013, 19, 1028-1034.	3.3	37
30	Alkyl-Functionalized Organic Dyes for Efficient Molecular Photovoltaics [<i>J. Am. Chem. Soc.</i> 2006 , <i>128</i> , 14256â^14257] Journal of the American Chemical Society, 2008, 130, 4202-4203.	13.7	36
31	Remarkable synergistic effects in a mixed porphyrin dye-sensitized TiO2 film. Applied Physics Letters, 2011, 98, .	3.3	33
32	Carbazole Dyes with Alkyl-functionalized Thiophenes for Dye-sensitized Solar Cells: Relation between Alkyl Chain Length and Photovoltaic Performance. Chemistry Letters, 2011, 40, 872-873.	1.3	33
33	Alternation of Charge Injection and Recombination in Dye-Sensitized Solar Cells by the Addition of Nonconjugated Bridge to Organic Dyes. Journal of Physical Chemistry C, 2013, 117, 2024-2031.	3.1	33
34	Enhanced performance of dye-sensitized solar cells using carbazole-substituted di-chromophoric porphyrin dyes. Journal of Materials Chemistry A, 2014, 2, 16963-16977.	10.3	30
35	Enhancement of dye regeneration kinetics in dichromophoric porphyrin–carbazole triphenylamine dyes influenced by more exposed radical cation orbitals. Chemical Science, 2016, 7, 3506-3516.	7.4	29
36	Electron Transport and Recombination in Dye-Sensitized TiO ₂ Solar Cells Fabricated without Sintering Process. Journal of Physical Chemistry C, 2008, 112, 20505-20509.	3.1	28

SHOGO MORI

#	Article	IF	CITATIONS
37	Concerted effect of large molecular dyes and bulky cobalt complex redox couple to retard recombination in dye-sensitized solar cells. Electrochemistry Communications, 2011, 13, 778-780.	4.7	28
38	Enhanced Charge Separation Efficiency in Pyridineâ€Anchored Phthalocyanineâ€Sensitized Solar Cells by Linker Elongation. Chemistry - an Asian Journal, 2015, 10, 2347-2351.	3.3	26
39	An Alkyloxyphenyl Group as a Sterically Hindered Substituent on a Triphenylamine Donor Dye for Effective Recombination Inhibition in Dye-Sensitized Solar Cells. Langmuir, 2016, 32, 1178-1183.	3.5	22
40	Three-dimensional electron-accepting compounds containing perylene bis(dicarboximide)s as n-type organic photovoltaic materials. Chemical Communications, 2013, 49, 8386.	4.1	20
41	Cation Exchange at Semiconducting Oxide Surfaces: Origin of Light-Induced Performance Increases in Porphyrin Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2013, 117, 11885-11898.	3.1	20
42	Structural Effects of the Donor Moiety on Reduction Kinetics of Oxidized Dye in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2016, 120, 3612-3618.	3.1	20
43	Discovery of S···C≡N Intramolecular Bonding in a Thiophenylcyanoacrylate-Based Dye: Realizing Charge Transfer Pathways and Dye···TiO ₂ Anchoring Characteristics for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 25952-25961.	8.0	20
44	Dichromophoric Zinc Porphyrins: Filling the Absorption Gap between the Soret and Q Bands. Journal of Physical Chemistry C, 2015, 119, 5350-5363.	3.1	19
45	Interfacial Charge Transfer in Dye-Sensitized Solar Cells Using SCN-Free Terpyridine-Coordinated Ru Complex Dye and Co Complex Redox Couples. ACS Applied Materials & Interfaces, 2016, 8, 16677-16683.	8.0	19
46	Exploiting Intermolecular Interactions between Alkyl-Functionalized Redox-Active Molecule Pairs to Enhance Interfacial Electron Transfer. Journal of the American Chemical Society, 2018, 140, 13935-13944.	13.7	18
47	A method to measure electron lifetime in dye-sensitized solar cells: Stepped current induced measurement of cell voltage in the dark. Electrochemistry Communications, 2011, 13, 1420-1422.	4.7	17
48	A Nonconjugated Bridge in Dimer-Sensitized Solar Cells Retards Charge Recombination without Decreasing Charge Injection Efficiency. ACS Applied Materials & Interfaces, 2013, 5, 10824-10829.	8.0	17
49	Charge Transport in Dye-Sensitized Solar Cells Based on Flame-made \$hbox{TiO}_{m 2}\$ Nanoparticles. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1641-1648.	2.9	16
50	The effect of bulky electron-donating thioether substituents on the performances of phthalocyanine based dye sensitized solar cells. Sustainable Energy and Fuels, 2021, 5, 584-589.	4.9	16
51	Enhanced Electron Lifetimes in Dye-Sensitized Solar Cells Using a Dichromophoric Porphyrin: The Utility of Intermolecular Forces. ACS Applied Materials & Interfaces, 2015, 7, 22078-22083.	8.0	14
52	Low-Symmetrical Zinc(II) Benzonaphthoporphyrazine Sensitizers for Light-Harvesting in Near-IR Region of Dye-Sensitized Solar Cells. Inorganic Chemistry, 2016, 55, 5014-5018.	4.0	13
53	Stepped light-induced transient measurements of photocurrent and voltage in dye-sensitized solar cells based on ZnO and ZnO:Ga. Journal of Applied Physics, 2009, 106, .	2.5	11
54	Quantifying Recombination Losses during Charge Extraction in Bulk Heterojunction Solar Cells Using a Modified Charge Extraction Technique. Advanced Energy Materials, 2017, 7, 1602026.	19.5	11

SHOGO MORI

#	Article	IF	CITATIONS
55	An Increase in Energy Conversion Efficiency by Decreasing Cobalt Redox Electrolyte Diffusion Resistance in Dye-sensitized Solar Cells. Chemistry Letters, 2013, 42, 453-454.	1.3	10
56	Deceleration of dye cation reduction kinetics by adding alkyl chains to the π-conjugated linker of dye molecules. Japanese Journal of Applied Physics, 2014, 53, 127301.	1.5	10
57	Significant Effect of Electronic Coupling on Electron Transfer between Surface-Bound Porphyrins and Co ^{2+/3+} Complex Electrolytes. Journal of Physical Chemistry C, 2020, 124, 9178-9190.	3.1	10
58	Substrate-Dependent Electron-Transfer Rate of Mixed-Ligand Electrolytes: Tuning Electron-Transfer Rate without Changing Driving Force. Journal of the American Chemical Society, 2021, 143, 488-495.	13.7	9
59	The Effect of the Dielectric Environment on Electron Transfer Reactions at the Interfaces of Molecular Sensitized Semiconductors in Electrolytes. Journal of Physical Chemistry C, 2020, 124, 6979-6992.	3.1	8
60	Zinc phthalocyanine sensitizer having double carboxylic acid anchoring groups for dye-sensitized solar cells with cobalt(<scp>ii</scp> ii)-based redox electrolyte. RSC Advances, 2015, 5, 82292-82295.	3.6	7
61	Enhancement of quantum efficiency by co-adsorbing small julolidine dye and bulky triphenylamine dye in dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 356, 403-410.	3.9	7
62	TiO2-Based Dye-Sensitized Solar Cell. , 2006, , 193-225.		6
63	A Novel Covalently Linked Zn Phthalocyanineâ€Zn Porphyrin Dyad for Dyeâ€sensitized Solar Cells. Israel Journal of Chemistry, 2016, 56, 175-180.	2.3	6
64	Carbazole Dyes with Ether Groups for Dye-Sensitized Solar Cells: Effect of Negative Charges in Dye Molecules on Electron Lifetime. Japanese Journal of Applied Physics, 2012, 51, 10NE14.	1.5	4
65	Lightâ€Harvesting in the Nearâ€Infrared Region: Dyeâ€5ensitized Solar Cells Sensitized with Asymmetric Ringâ€Expanded Zinc(II) Phthalocyanines. Asian Journal of Organic Chemistry, 2014, 3, 1083-1088.	2.7	4
66	Charge Transporting Properties and Output Characteristics in Polythiophene:Fullerene Derivative Solar Cells. Japanese Journal of Applied Physics, 2011, 50, 01BC13.	1.5	3
67	Organic Sensitizers Including ï€-Conjugated Fluorene–Benzothiadiazole Bridge for Dye-sensitized Solar Cells. Chemistry Letters, 2012, 41, 1613-1615.	1.3	3
68	Structural Effect of the Pendant Unit in Thiocyanateâ€Free Ru ^{II} Sensitizers on the Dyeâ€Sensitized Solar Cell Performance. European Journal of Inorganic Chemistry, 2017, 2017, 5041-5046.	2.0	3
69	Identification of the loss mechanisms in TiO2 and ZnO solar cells based on blue, piperidinyl-substituted, mono-anhydride perylene dyes. Electrochimica Acta, 2020, 355, 136638.	5.2	3
70	3D Structural Optimization of Zinc Phthalocyanine-Based Sensitizers for Enhancement of Open-Circuit Voltage of Dye-Sensitized Solar Cells. Energies, 2020, 13, 2288.	3.1	3
71	Carbazole Dyes with Ether Groups for Dye-Sensitized Solar Cells: Effect of Negative Charges in Dye Molecules on Electron Lifetime. Japanese Journal of Applied Physics, 2012, 51, 10NE14.	1.5	3
72	High Voltage Flexible ZnO Solar Cells Employing Bulky Organic Dye and [Co(bpy) ₃] ^{2+/3+} Redox Electrolyte. Journal of the Electrochemical Society, 2018, 165, B3194-B3200.	2.9	2

#	Article	IF	CITATIONS
73	Molecular Geometry Dependent Electronic Coupling and Reorganization Energy for Electron Transfer between Dye Molecule Adsorbed on TiO2 Electrode and Co Complex in Electrolyte Solutions. Journal of Physical Chemistry C, 0, , .	3.1	2
74	Required Conditions for SLIM-PCV Methods to Measure Electron Diffusion Coefficients and Lifetime in Dye-Sensitized Solar Cells. Electrochemistry, 2012, 80, 886-890.	1.4	1
75	Molecular design strategy for realizing vectorial electron transfer in photoelectrodes. CheM, 2022, 8, 1121-1136.	11.7	1