Shyam Biswas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1007031/publications.pdf

Version: 2024-02-01

90 papers

7,953 citations

94269 37 h-index 88 g-index

92 all docs 92 docs citations

92 times ranked 9200 citing authors

#	Article	IF	CITATIONS
1	Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews, 2012, 112, 933-969.	23.0	3,923
2	New Functionalized Flexible Al-MIL-53-X (X = -Cl, -Br, -CH $<$ sub $>$ 3 $<$ /sub $>$, -NO $<$ sub $>$ 2 $<$ /sub $>$,) Tj ETQq0 0 0 rgBT /O Chemistry, 2011, 50, 9518-9526.	verlock 10 1.9	Tf 50 707 To 254
3	A General Strategy for the Synthesis of Functionalised UiOâ€66 Frameworks: Characterisation, Stability and CO ₂ Adsorption Properties. European Journal of Inorganic Chemistry, 2013, 2013, 2154-2160.	1.0	199
4	Enhanced selectivity of CO2 over CH4 in sulphonate-, carboxylate- and iodo-functionalized UiO-66 frameworks. Dalton Transactions, 2013, 42, 4730.	1.6	171
5	3D Luminescent Amide-Functionalized Cadmium Tetrazolate Framework for Selective Detection of 2,4,6-Trinitrophenol. Crystal Growth and Design, 2016, 16, 842-851.	1.4	167
6	<i>p</i> -Xylene-Selective Metal–Organic Frameworks: A Case of Topology-Directed Selectivity. Journal of the American Chemical Society, 2011, 133, 18526-18529.	6.6	159
7	A thiadiazole-functionalized Zr(<scp>iv</scp>)-based metal–organic framework as a highly fluorescent probe for the selective detection of picric acid. CrystEngComm, 2016, 18, 3104-3113.	1.3	141
8	A cubic coordination framework constructed from benzobistriazolate ligands and zinc ions having selective gas sorption properties. Dalton Transactions, 2009, , 6487.	1.6	120
9	A cerium-based metal–organic framework having inherent oxidase-like activity applicable for colorimetric sensing of biothiols and aerobic oxidation of thiols. CrystEngComm, 2017, 19, 5915-5925.	1.3	101
10	Cerium-based azide- and nitro-functionalized UiO-66 frameworks as turn-on fluorescent probes for the sensing of hydrogen sulphide. CrystEngComm, 2016, 18, 4374-4381.	1.3	95
11	A multi-responsive carbazole-functionalized Zr(IV)-based metal-organic framework for selective sensing of Fe(III), cyanide and p -nitrophenol. Sensors and Actuators B: Chemical, 2017, 250, 121-131.	4.0	94
12	Post-synthetic modification of a metal-organic framework with fluorescent-tag for dual naked-eye sensing in aqueous medium. Sensors and Actuators B: Chemical, 2017, 239, 759-767.	4.0	83
13	A highly stable dimethyl-functionalized Ce(<scp>iv</scp>)-based UiO-66 metal–organic framework material for gas sorption and redox catalysis. CrystEngComm, 2016, 18, 7855-7864.	1.3	80
14	New Functionalized Metal–Organic Frameworks MIL-47-X (X = â-'Cl, â-'Br, â-'CH ₃ ,) Tj ETQq0 0 0 rg Adsorption Properties. Journal of Physical Chemistry C, 2013, 117, 22784-22796.	gBT /Overlo 1.5	ock 10 Tf 50 79
15	Metal–Organic Framework (MOF) Derived Recyclable, Superhydrophobic Composite of Cotton Fabrics for the Facile Removal of Oil Spills. ACS Applied Materials & Samp; Interfaces, 2021, 13, 8563-8573.	4.0	78
16	Fuel purification, Lewis acid and aerobic oxidation catalysis performed by a microporous Co-BTT (BTT $3\hat{a}$ ° = 1,3,5-benzenetristetrazolate) framework having coordinatively unsaturated sites. Journal of Materials Chemistry, 2012, 22, 10200.	6.7	75
17	A dinitro-functionalized Zr(IV)-based metal-organic framework as colorimetric and fluorogenic probe for highly selective detection of hydrogen sulphide. Sensors and Actuators B: Chemical, 2017, 245, 1039-1049.	4.0	74
18	New V ^{IV} -Based Metal–Organic Framework Having Framework Flexibility and High CO ₂ Adsorption Capacity. Inorganic Chemistry, 2013, 52, 113-120.	1.9	68

#	Article	IF	CITATIONS
19	Metal–Organic Framework Showing Selective and Sensitive Detection of Exogenous and Endogenous Formaldehyde. Inorganic Chemistry, 2018, 57, 15149-15157.	1.9	67
20	Partially fluorinated MIL-47 and Al-MIL-53 frameworks: influence of functionalization on sorption and breathing properties. Physical Chemistry Chemical Physics, 2013, 15, 3552.	1.3	63
21	A dinitro-functionalized metal–organic framework featuring visual and fluorogenic sensing of H ₂ S in living cells, human blood plasma and environmental samples. Analyst, The, 2018, 143, 1482-1491.	1.7	61
22	The effect of functional groups in the aqueous-phase selective sensing of Fe($<$ scp $>$ iii $<$ /scp $>$) ions by thienothiophene-based zirconium metalâ \in organic frameworks and the design of molecular logic gates. Dalton Transactions, 2018, 47, 1159-1170.	1.6	59
23	A new quinoline based luminescent Zr(<scp>iv</scp>) metal–organic framework for the ultrasensitive recognition of 4-nitrophenol and Fe(<scp>iii</scp>) ions. Dalton Transactions, 2018, 47, 14696-14705.	1.6	59
24	Vanadium metal–organic frameworks: structures and applications. New Journal of Chemistry, 2014, 38, 1853-1867.	1.4	57
25	Rapid and highly sensitive detection of extracellular and intracellular H ₂ S by an azide-functionalized Al(<scp>iii</scp>)-based metal–organic framework. Dalton Transactions, 2017, 46, 12856-12864.	1.6	57
26	A dual functional MOF-based fluorescent sensor for intracellular phosphate and extracellular 4-nitrobenzaldehyde. Dalton Transactions, 2019, 48, 1332-1343.	1.6	56
27	Extraordinary sensitivity for H ₂ S and Fe(<scp>iii</scp>) sensing in aqueous medium by Al-MIL-53-N ₃ metal–organic framework: <i>in vitro</i> and <i>in vivo</i> applications of H ₂ S sensing. Dalton Transactions, 2018, 47, 2690-2700.	1.6	53
28	Highly Active Urea-Functionalized Zr(IV)-UiO-67 Metal–Organic Framework as Hydrogen Bonding Heterogeneous Catalyst for Friedel–Crafts Alkylation. Inorganic Chemistry, 2019, 58, 5163-5172.	1.9	51
29	Selective and Sensitive Sensing of Hydrogen Peroxide by a Boronic Acid Functionalized Metal–Organic Framework and Its Application in Live-Cell Imaging. Inorganic Chemistry, 2018, 57, 14574-14581.	1.9	49
30	A new 3D luminescent Zn(ii)–organic framework containing a quinoline-2,6-dicarboxylate linker for the highly selective sensing of Fe(iii) ions. Dalton Transactions, 2019, 48, 1766-1773.	1.6	49
31	Vanadium Analogues of Nonfunctionalized and Aminoâ€Functionalized MOFs with MILâ€101 Topology – Synthesis, Characterization, and Gas Sorption Properties. European Journal of Inorganic Chemistry, 2012, 2012, 2481-2486.	1.0	48
32	A highly catalytically active Hf(IV) metal-organic framework for Knoevenagel condensation. Microporous and Mesoporous Materials, 2019, 284, 459-467.	2.2	47
33	Aqueous Phase Sensing of Fe ³⁺ and Ascorbic Acid by a Metal–Organic Framework and Its Implication in the Construction of Multiple Logic Gates. Chemistry - an Asian Journal, 2019, 14, 2822-2830.	1.7	44
34	Syntheses and Magnetostructural Investigations on Kuratowski-Type Homo- and Heteropentanuclear Coordination Compounds [MZn ₄ Cl ₄ (L) ₆] (M ^{II} = Zn, Fe,) Tj	ETQ <u>q</u> Ø 0 0	rgBT/Overloo
35	Nonplanar∢i>K∢li>∢sub>3,3∢lsub>Graph. Inorganic Chemistry, 2010, 49, 7424-7434. A Pyrene-Functionalized Metal–Organic Framework for Nonenzymatic and Ratiometric Detection of Uric Acid in Biological Fluid via Conformational Change. Inorganic Chemistry, 2019, 58, 5654-5663.	1.9	42
36	A functionalized UiO-66 MOF for turn-on fluorescence sensing of superoxide in water and efficient catalysis for Knoevenagel condensation. Dalton Transactions, 2019, 48, 17371-17380.	1.6	40

#	Article	IF	CITATIONS
37	A recyclable post-synthetically modified Al(<scp>iii</scp>) based metal–organic framework for fast and selective fluorogenic recognition of bilirubin in human biofluids. Dalton Transactions, 2019, 48, 9266-9275.	1.6	38
38	Comparison of different solid adsorbents for the removal of mobile pesticides from aqueous solutions. Adsorption, 2015, 21, 243-254.	1.4	37
39	The flexibility of modified-linker MIL-53 materials. Dalton Transactions, 2016, 45, 4162-4168.	1.6	37
40	Sorption and breathing properties of difluorinated MIL-47 and Al-MIL-53 frameworks. Microporous and Mesoporous Materials, 2013, 181, 175-181.	2.2	36
41	Homo―and Heteropentanuclear Coordination Compounds with <i>T</i> _d Symmetry – the Solid State Structures of [MZn ₄ (L) ₄ (L′) ₆] (M = Co ^{II} or) Tj EChemie, 2008, 634, 2532-2538.	Е <u>ТО</u> q1 1 0).784314 rg
42	Synthesis, characterization and sorption properties of functionalized Cr-MIL-101-X (X=–F, –Cl, –Br,) Tj ETQq	_l Q.Q 0 rgB¹	T JOverlock
43	Post-synthetic modification of a metal–organic framework with a chemodosimeter for the rapid detection of lethal cyanide <i>via</i> dual emission. Dalton Transactions, 2020, 49, 8684-8692.	1.6	32
44	Selective Sensing of Peroxynitrite by Hf-Based UiO-66-B(OH) ₂ Metal–Organic Framework: Applicability to Cell Imaging. Inorganic Chemistry, 2018, 57, 10128-10136.	1.9	31
45	An ultra-robust luminescent CAU-10 MOF acting as a fluorescent "turn-off―sensor for Cr2O72â^' in aqueous medium. Inorganica Chimica Acta, 2019, 497, 119078.	1.2	31
46	A vinyl functionalized mixed linker CAU-10 metal-organic framework acting as a fluorescent sensor for the selective detection of H2S and palladium(II). Microporous and Mesoporous Materials, 2020, 293, 109790.	2.2	31
47	Congo red decomposition by photocatalytic formation of hydroxyl radicals (·OH) using titanium metal–organic frameworks. Transition Metal Chemistry, 2019, 44, 77-87.	0.7	30
48	A fluorescent zirconium organic framework displaying rapid and nanomolar level detection of Hg(<scp>ii</scp>) and nitroantibiotics. Inorganic Chemistry Frontiers, 2022, 9, 859-869.	3.0	30
49	Facile synthesis and gas adsorption behavior of new functionalized Al-MIL-101-X (XÂ= –CH3, –NO2,) Tj ETQq1 91-97.	1 0.7843 2.2	314 rgBT /0 29
50	Fluorogenic naked-eye sensing and live-cell imaging of cyanide by a hydrazine-functionalized CAU-10 metal–organic framework. CrystEngComm, 2018, 20, 4194-4201.	1.3	29
51	Influence of Hydrogen Bond Donating Sites in UiOâ€66 Metalâ€Organic Framework for Highly Regioselective Methanolysis of Epoxides. ChemCatChem, 2020, 12, 1789-1798.	1.8	27
52	A pyrazine core-based luminescent Zr(<scp>iv</scp>) organic framework for specific sensing of Fe ³⁺ , picric acid and Cr ₂ O ₇ ^{2â^'} . CrystEngComm, 2019, 21, 6252-6260.	1.3	26
53	A Zr-Based Metal–Organic Framework with a DUT-52 Structure Containing a Trifluoroacetamido-Functionalized Linker for Aqueous Phase Fluorescence Sensing of the Cyanide Ion and Aerobic Oxidation of Cyclohexane. Inorganic Chemistry, 2021, 60, 4539-4550.	1.9	26
54	A functionalized UiO-66 MOF acting as a luminescent chemosensor for selective and sensitive turn-on detection of superoxide and acetylacetone. Microporous and Mesoporous Materials, 2021, 323, 111251.	2.2	26

#	Article	IF	CITATIONS
55	Nonanuclear Coordination Compounds Featuring {M ₉ L ₁₂ } _{6+ Cores (M = Ni^{II}, Co^{II}, or Zn^{II}; L = 1,2,3â€Benzotriazolate). European Journal of Inorganic Chemistry, 2009, 2009, 3094-3101.}	1.0	24
56	Specific fluorescence sensing of hydrogen sulphide by an azide functionalized Zr(IV) MOF with DUT-52 topology. Microporous and Mesoporous Materials, 2021, 311, 110725.	2.2	22
57	Rapid switch-on fluorescent detection of nanomolar-level hydrazine in water by a diacetoxy-functionalized MOF: application in paper strips and environmental samples. Dalton Transactions, 2020, 49, 12565-12573.	1.6	21
58	A diamino functionalized metal-organic framework for fluorometric recognition of free chlorine in environmental water samples. Microporous and Mesoporous Materials, 2020, 299, 110116.	2.2	21
59	Two birds with one arrow: a functionalized Al(<scp>iii</scp>) MOF acts as a fluorometric sensor of dopamine in bio-fluids and a recyclable catalyst for the Biginelli reaction. Journal of Materials Chemistry C, 2022, 10, 6717-6727.	2.7	21
60	Superhydrophobic Self-Cleaning Composite of a Metal–Organic Framework with Polypropylene Fabric for Efficient Removal of Oils from Oil–Water Mixtures and Emulsions. ACS Applied Nano Materials, 2022, 5, 10003-10014.	2.4	21
61	Catalytic Performance of Vanadium MILâ€47 and Linkerâ€Substituted Variants in the Oxidation of Cyclohexene: A Combined Theoretical and Experimental Approach. ChemPlusChem, 2014, 79, 1183-1197.	1.3	20
62	Fluorescence Modulation of an Aggregation-Induced Emission Active Ligand via Rigidification in a Coordination Polymer and Its Application in Singlet Oxygen Sensing. Crystal Growth and Design, 2019, 19, 6388-6397.	1.4	20
63	Synthesis, Characterization, Stability, and Gas Adsorption Characteristics of a Highly Stable Zirconium Mesaconate Framework Material. European Journal of Inorganic Chemistry, 2015, 2015, 3317-3322.	1.0	19
64	Aqueous-Phase Nanomolar Detection of Dichromate by a Recyclable Cd(II) Metal–Organic Framework. Crystal Growth and Design, 2021, 21, 2680-2689.	1.4	19
65	Dioxygen activation in photooxidation of diphenylmethane by a dioxomolybdenum(VI) complex anchored covalently onto mesoporous titania. Transition Metal Chemistry, 2013, 38, 119-127.	0.7	18
66	Gas sorption and transition-metal cation separation with a thienothiophene based zirconium metal–organic framework. Journal of Solid State Chemistry, 2015, 232, 221-227.	1.4	17
67	Thermal spin-crossover in the [M3Zn6Cl6L12] (M = Zn, Fell; L = 5,6-dimethoxy-1,2,3-benzotriazolate) system: structural, electrochemical, Mössbauer, and UV-Vis spectroscopic studies. Dalton Transactions, 2010, 39, 9851.	1.6	16
68	A Thiophene-2-carboxamide-Functionalized Zr(IV) Organic Framework as a Prolific and Recyclable Heterogeneous Catalyst for Regioselective Ring Opening of Epoxides. Inorganic Chemistry, 2019, 58, 16581-16591.	1.9	16
69	Highly Active Bisamino Functionalized Zr(IV)â€UiOâ€67 Metalâ€Organic Framework for Cascade Catalysis. European Journal of Inorganic Chemistry, 2020, 2020, 2830-2834.	1.0	15
70	A phthalimide-functionalized UiO-66 metal–organic framework for the fluorogenic detection of hydrazine in live cells. Dalton Transactions, 2019, 48, 12615-12621.	1.6	14
71	A Metalâ€Organic Framework with Allyloxy Functionalization for Aqueousâ€Phase Fluorescence Recognition of Pd(II) Ion. European Journal of Inorganic Chemistry, 2021, 2021, 3846-3851.	1.0	14
72	Rapid recognition of fatal cyanide in water in a wide pH range by a trifluoroacetamido based metal–organic framework. New Journal of Chemistry, 2021, 45, 20193-20200.	1.4	14

#	Article	IF	CITATIONS
73	Diamino group-functionalized Zr-based metal–organic framework for fluorescence sensing of free chlorine in the aqueous phase and Knoevenagel condensation. Dalton Transactions, 2022, 51, 6964-6975.	1.6	14
74	A self-cleaning hydrophobic MOF-based composite for highly efficient and recyclable separation of oil from water and emulsions. Materials Chemistry Frontiers, 2022, 6, 2051-2060.	3.2	14
75	Zr(IV) and Ce(IV)-based metal-organic frameworks incorporating 4-carboxycinnamic acid as ligand: Synthesis and properties. Microporous and Mesoporous Materials, 2017, 237, 275-281.	2.2	13
76	A hydrazine functionalized UiO-66(Hf) metal–organic framework for the synthesis of quinolines via Friedläder condensation. New Journal of Chemistry, 2020, 44, 10982-10988.	1.4	13
77	Improved Synthesis of a Zirconium(IV) Muconate Metal–Organic Framework: Characterization, Stability and Gas Sorption Properties. European Journal of Inorganic Chemistry, 2015, 2015, 2463-2468.	1.0	11
78	An Anthraceneâ€Based Metalâ€Organic Framework for Selective Photoâ€Reduction of Carbon Dioxide to Formic Acid Coupled with Water Oxidation. Chemistry - A European Journal, 2021, 27, 4098-4107.	1.7	11
79	Ultrafast and nanomolar level detection of H $<$ sub $>$ 2 $<$ /sub $>$ S in aqueous medium using a functionalized UiO-66 metalâ \in "organic framework based fluorescent chemosensor. Dalton Transactions, 2021, 50, 11631-11639.	1.6	11
80	An acetoxy functionalized Al(<scp>iii</scp>) based metal–organic framework showing selective "turn on―detection of perborate in environmental samples. Dalton Transactions, 2020, 49, 17612-17620.	1.6	10
81	Sulfonic acid functionalized zirconium-based metal–organic framework for the selective detection of copper(<scp>ii</scp>) ions. New Journal of Chemistry, 2022, 46, 10477-10483.	1.4	10
82	Amino Group Functionalized Hfâ€Based Metalâ€Organic Framework for Knoevenagelâ€Doebner Condensation. European Journal of Inorganic Chemistry, 2021, 2021, 3396-3403.	1.0	8
83	Rational design of a functionalized aluminum metal–organic framework as a turn-off fluorescence sensor for α-ketoglutaric acid. Dalton Transactions, 2020, 49, 16928-16934.	1.6	7
84	Structural Diversity in Supramolecular Organization of Anionic Phosphate Monoesters: Role of Cations. ACS Omega, 2019, 4, 2118-2133.	1.6	6
85	A functionalized UiO-66 metal-organic framework acting as a fluorescent based selective sensor of hydrazine in aqueous medium. Microporous and Mesoporous Materials, 2022, 329, 111552.	2.2	6
86	Friedel-Crafts alkylation reaction efficiently catalyzed by a di-amide functionalized Zr(IV) metal-organic framework. Molecular Catalysis, 2022, 517, 112007.	1.0	6
87	A Cd(<scp>ii</scp>)-organic framework as a highly sensitive and rapid fluorometric sensor for ascorbic acid in aqueous medium. CrystEngComm, 2022, 24, 4723-4730.	1.3	6
88	Two 3D Coordination Frameworks Based on Benzobisimidazole Linkers Generated under Similar Conditions: Synthesis, Structures and Thermal Properties. European Journal of Inorganic Chemistry, 2014, 2014, 5362-5369.	1.0	3
89	Fluorogenic naked eye "turn-on―sensing of hypochlorous acid by a Zr-based metal organic framework. New Journal of Chemistry, 2021, 45, 14211-14217.	1.4	3
90	Nanomolar level fluorogenic detection of cyanide with an amide functionalized zirconium metalâ€organic framework and its application in realâ€world cyanide monitoring. European Journal of Inorganic Chemistry, 0, , .	1.0	3