
Nilashis Nandi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10069906/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of the transfer ribonucleic acid (tRNA) bound magnesium ions in the charging step of aminoacylation reaction in the glutamyl tRNA synthetase and the seryl tRNA synthetase bound with cognate tRNA. Journal of Biomolecular Structure and Dynamics, 2022, 40, 8538-8559.	3.5	4
2	Dynamics of the Catalytic Active Site of Isoleucyl tRNA Synthetase from <i>Staphylococcus aureus</i> bound with Adenylate and Mupirocin. Journal of Physical Chemistry B, 2022, 126, 620-633.	2.6	7
3	Whole exome sequencing identifies the potential role of genes involved in p53 pathway in Nasopharyngeal Carcinoma from Northeast India. Gene, 2022, 812, 146099.	2.2	1
4	Inhibition of seryl tRNA synthetase by seryl nucleoside moiety (SB-217452) of albomycin antibiotic. Journal of Biomolecular Structure and Dynamics, 2020, 38, 2440-2454.	3.5	10
5	Classical molecular dynamics simulation of seryl tRNA synthetase and threonyl tRNA synthetase bound with tRNA and aminoacyl adenylate. Journal of Biomolecular Structure and Dynamics, 2019, 37, 336-358.	3.5	5
6	Dynamics of the active site loops in catalyzing aminoacylation reaction in seryl and histidyl <i>t</i> RNA synthetases. Journal of Biomolecular Structure and Dynamics, 2018, 36, 878-892.	3.5	10
7	Molecular Studies of the Inhibition of Aminoacyl tRNA Synthetases in Microbial Pathogens. Frontiers in Computational Chemistry, 2018, , 91-143.	0.3	1
8	Catalytic and photocatalytic behavior of TiO ₂ based nanoparticles—their use in the synthesis of a novel TICT probe. Materials Research Express, 2015, 2, 065011.	1.6	3
9	Dynamics of the Active Sites of Dimeric Seryl <i>t</i> RNA Synthetase from <i>Methanopyrus kandleri</i> . Journal of Physical Chemistry B, 2015, 119, 10832-10848.	2.6	10
10	Helfrich's concept of intrinsic force and its molecular origin in bilayers and monolayers. Advances in Colloid and Interface Science, 2014, 208, 110-120.	14.7	6
11	Active Site Nanospace of Aminoacyl tRNA Synthetase: Difference Between the Class I and Class II Synthetases. Journal of Nanoscience and Nanotechnology, 2014, 14, 2280-2298.	0.9	14
12	Chirality and Protein Biosynthesis. Topics in Current Chemistry, 2012, 333, 255-305.	4.0	23
13	Differential Förster Resonance Energy Transfer from the Excimers of Poly(N-vinylcarbazole) to Coumarin 153. Journal of Physical Chemistry B, 2012, 116, 4693-4701.	2.6	12
14	Mechanism of the activation step of the aminoacylation reaction: a significant difference between class I and class II synthetases. Journal of Biomolecular Structure and Dynamics, 2012, 30, 701-715.	3.5	26
15	Nanoaggregate shapes at the air/water interface. Physical Chemistry Chemical Physics, 2011, 13, 4812.	2.8	26
16	Influence of the conserved active site residues of histidyl tRNA synthetase on the mechanism of aminoacylation reaction. Biophysical Chemistry, 2011, 158, 61-72.	2.8	7
17	Aminoacylation Reaction in the Histidyl-tRNA Synthetase: Fidelity Mechanism of the Activation Step. Journal of Physical Chemistry B, 2010, 114, 2301-2311.	2.6	17
18	Cross-Sectional Area Increase at Phase Transition on Compression: An Unexpected Phenomenon Observed in an Amide Monolayer. Journal of Physical Chemistry C, 2010, 114, 15695-15702.	3.1	11

Nilashis Nandi

#	Article	IF	CITATIONS
19	Orientation and distance dependent chiral discrimination in the first step of the aminoacylation reaction: Integrated molecular orbital and semi-empirical method (ONIOM) based calculation. Colloids and Surfaces B: Biointerfaces, 2009, 74, 468-476.	5.0	9
20	Chiral discrimination in the confined environment of biological nanospace: reactions and interactions involving amino acids and peptides. International Reviews in Physical Chemistry, 2009, 28, 111-167.	2.3	17
21	The Molecular Recognition of Dipeptide by Oligoglycyl Head Group of Amphiphile: A Quantum Chemical Study. Journal of Nanoscience and Nanotechnology, 2009, 9, 77-89.	0.9	1
22	Chiral discrimination and recognition in Langmuir monolayers. Current Opinion in Colloid and Interface Science, 2008, 13, 40-46.	7.4	37
23	Chiral Discrimination in Stearoyl Amine Glycerol Monolayers. Langmuir, 2008, 24, 9489-9494.	3.5	8
24	Role of Chirality of the Sugar Ring in the Ribosomal Peptide Synthesis. Journal of Physical Chemistry B, 2008, 112, 9187-9195.	2.6	14
25	Molecular Interactions in Amphiphilic Assemblies: Theoretical Perspective. Accounts of Chemical Research, 2007, 40, 351-360.	15.6	40
26	Role of Dipolar Interaction in the Mesoscopic Domains of Phospholipid Monolayers:Â Dipalmitoylphosphatidylcholine and Dipalmitoylphosphatidylethanolamine. Langmuir, 2007, 23, 6991-6996.	3.5	25
27	Homochiral Preference in Peptide Synthesis in Ribosome:Â Role of Amino Terminal, Peptidyl Terminal, and U2620. Journal of Physical Chemistry B, 2007, 111, 9999-10004.	2.6	10
28	Water catalyzed peptide bond formation in l-alanine dipeptide: The role of weak hydrogen bonding. Computational and Theoretical Chemistry, 2007, 818, 107-118.	1.5	10
29	Semiempirical Quantum Mechanical Calculations of Dipolar Interaction between Dipyridamole and Dipalmitoyl Phosphatidyl Choline in Langmuir Monolayers. Langmuir, 2006, 22, 5398-5402.	3.5	13
30	Comparison of the Intermolecular Energy Surfaces of Amino Acids:Â Orientation-Dependent Chiral Discrimination. Journal of Physical Chemistry B, 2006, 110, 8840-8849.	2.6	17
31	The correlation between the molecular chirality of the sugar ring on the mesoscopic aggregate morphology in RNA and DNA mimetic systems. Chemical Physics Letters, 2005, 414, 336-340.	2.6	4
32	Role of Electrostatic Interactions for the Domain Shapes of Langmuir Monolayers of Monoglycerol Amphiphiles. Journal of Physical Chemistry B, 2005, 109, 10820-10829.	2.6	30
33	Anomalous Temperature Dependence of Domain Shape in Langmuir Monolayers:Â Role of Dipolar Interaction. Journal of Physical Chemistry B, 2004, 108, 18793-18795.	2.6	22
34	Role of Secondary Level Chiral Structure in the Process of Molecular Recognition of Ligand:Â Study of Model Helical Peptide. Journal of Physical Chemistry B, 2004, 108, 789-797.	2.6	16
35	Chiral Discrimination Effects in Langmuir Monolayers of 1-O-Hexadecyl Glycerol. Journal of Physical Chemistry B, 2004, 108, 327-335.	2.6	31
36	Effect of Molecular Chirality on the Morphology of Biomimetic Langmuir Monolayers. ChemInform, 2003, 34, no.	0.0	0

Nilashis Nandi

#	Article	IF	CITATIONS
37	Correlation between the microscopic and mesoscopic chirality in Langmuir monolayers. Thin Solid Films, 2003, 433, 12-21.	1.8	21
38	Effect of Molecular Chirality on the Morphology of Biomimetic Langmuir Monolayers. Chemical Reviews, 2003, 103, 4033-4076.	47.7	185
39	Chiral Discrimination Effects in Langmuir Monolayers:Â Monolayers of Palmitoyl Aspartic Acid,N-Stearoyl Serine Methyl Ester, andN-Tetradecyl-γ,Π-dihydroxypentanoic Acid Amide. Journal of Physical Chemistry B, 2003, 107, 3464-3475.	2.6	33
40	Molecular Origin of the Recognition of Chiral Odorant by Chiral Lipid:  Interaction of Dipalmitoyl Phosphatidyl Choline and Carvone. Journal of Physical Chemistry A, 2003, 107, 4588-4591.	2.5	13
41	Molecular Origin of the Chiral Interaction in Biomimetic Systems:Â Dipalmitoylphosphatidylcholine Langmuir Monolayer. Journal of Physical Chemistry B, 2002, 106, 10144-10149.	2.6	26
42	Dielectric Relaxation and Solvation Dynamics of Water in Complex Chemical and Biological Systems. Chemical Reviews, 2000, 100, 2013-2046.	47.7	861
43	Anomalous Dielectric Relaxation of Aqueous Protein Solutions. Journal of Physical Chemistry A, 1998, 102, 8217-8221.	2.5	124
44	Prediction of the Senses of Helical Amphiphilic Assemblies from Effective Intermolecular Pair Potential:Â Studies on Chiral Monolayers and Bilayers. Journal of Physical Chemistry A, 1997, 101, 1343-1351.	2.5	49
45	Solvation Dynamics in Monohydroxy Alcohols:  Agreement between Theory and Different Experiments. Journal of Physical Chemistry B, 1997, 101, 2968-2979.	2.6	48
46	Dielectric Relaxation of Biological Water. Journal of Physical Chemistry B, 1997, 101, 10954-10961.	2.6	430
47	Molecular Origin of the Intrinsic Bending Force for Helical Morphology Observed in Chiral Amphiphilic Assemblies:Â Concentration and Size Dependence. Journal of the American Chemical Society, 1996, 118, 11208-11216.	13.7	74
48	Ultrafast Solvation Dynamics of an Ion in the γ-Cyclodextrin Cavity: The Role of Restricted Environment. The Journal of Physical Chemistry, 1996, 100, 13914-13919.	2.9	115
49	Application of scaled particle theory to alkyl-aryl surfactants: a two zone model of micellar core. Computational and Theoretical Chemistry, 1995, 332, 301-311.	1.5	2
50	Ultrafast solvation dynamics in water: Isotope effects and comparison with experimental results. Journal of Chemical Physics, 1995, 102, 1390-1397.	3.0	142
51	Ionic and dipolar solvation dynamics in liquid water. Journal of Chemical Sciences, 1994, 106, 1297-1306.	1.5	5
52	Application of scaled particle theory to the problem of micellization. 2. Cationic and nonionic surfactants. The Journal of Physical Chemistry, 1993, 97, 3900-3903.	2.9	5
53	Prediction of Partition Coefficients by Scaled Particle Theory*. Zeitschrift Fur Physikalische Chemie, 1991, 173, 179-189.	2.8	8
54	Application of scaled-particle theory to the problem of micellization. The Journal of Physical Chemistry, 1990, 94, 2537-2540.	2.9	7