
Lamine Hassini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1006917/publications.pdf Version: 2024-02-01

LAMINE HASSING

#	Article	IF	CITATIONS
1	Estimation of potato moisture diffusivity from convective drying kinetics with correction for shrinkage. Journal of Food Engineering, 2007, 79, 47-56.	5.2	123
2	Desorption isotherms and thermodynamic properties of prickly pear seeds. Industrial Crops and Products, 2015, 67, 457-465.	5.2	50
3	Moisture sorption isotherms and thermodynamic properties of Jack pine and palm wood: Comparative study. Industrial Crops and Products, 2014, 56, 200-210.	5.2	39
4	EXPERIMENTAL STUDY AND MATHEMATICAL MODELING OF SILVERSIDE FISH CONVECTIVE DRYING. Journal of Food Processing and Preservation, 2013, 37, 930-938.	2.0	22
5	Elaboration and characterization of clay-sand composite based on Juncus acutus fibers. Construction and Building Materials, 2020, 238, 117712.	7.2	20
6	Experimental study of water desorption isotherms and thin-layer convective drying kinetics of bay laurel leaves. Heat and Mass Transfer, 2016, 52, 2649-2659.	2.1	19
7	Vacuum contact drying kinetics of Jack pine wood and its influence on mechanical properties: industrial applications. Heat and Mass Transfer, 2015, 51, 1029-1039.	2.1	17
8	Palm wood drying and optimization of the processing parameters. Wood Material Science and Engineering, 2011, 6, 75-90.	2.3	16
9	Microwave drying kinetics of jack pine wood: determination of phytosanitary efficacy, energy consumption, and mechanical properties. European Journal of Wood and Wood Products, 2018, 76, 1101-1111.	2.9	16
10	Drying characteristics and sorption isotherms of silverside fish <i>(Atherina)</i> . International Journal of Food Science and Technology, 2011, 46, 594-600.	2.7	13
11	Modeling of Combined Microwave and Convective Drying of Wood: Prediction of Mechanical Behavior via Internal Gas Pressure. Drying Technology, 2015, 33, 1234-1242.	3.1	12
12	Drying of granular medium by hot air and microwaves. Modeling and prediction of internal gas pressure and binder distribution. Powder Technology, 2015, 286, 636-644.	4.2	9
13	Studies on convective drying of â€~Ameclyae' Opuntia ficus-indica seeds and its effect on the quality of extracted oil based on its α-tocopherol content. Heat and Mass Transfer, 2018, 54, 393-402.	2.1	7
14	Combined Convective and Microwave Drying of Agglomerated Sand: Internal Transfer Modeling with the Gas Pressure Effect. Drying Technology, 2013, 31, 898-904.	3.1	6
15	Moisture Diffusivity of Seedless Grape undergoing convective drying. Chemical Product and Process Modeling, 2017, 12, .	0.9	5
16	2-D Hydro-Viscoelastic Model for Convective Drying of Highly Deformable Saturated Product. Drying Technology, 2015, 33, 1872-1882.	3.1	4
17	Convective and infrared drying assisted by capillary drainage of spirulina: a real possibility to reduce the energy consumption. Heat and Mass Transfer, 2019, 55, 867-876.	2.1	3
18	Hydro-Thermo-Mechanical Model for Highly Deformable Product during Convective Drying. Chemical Product and Process Modeling, 2009, 4, .	0.9	2

LAMINE HASSINI

#	Article	IF	CITATIONS
19	Modelling of heat and mass transfer in a granular medium during high-temperature air drying. Effect of the internal gas pressure. Comptes Rendus - Mecanique, 2016, 344, 119-127.	2.1	2
20	Intensification of the convective drying process of Arthrospira (Spirulina) platensis by capillary draining: effect of the draining support. Journal of Applied Phycology, 2019, 31, 2921-2931.	2.8	2
21	2-D hydro-viscoelastic model for convective drying of deformable and unsaturated porous material. Comptes Rendus - Mecanique, 2017, 345, 248-258.	2.1	1