
Naval G Daver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1006749/publications.pdf

Version: 2024-02-01

NAVAL C DAVED

#	Article	IF	CITATIONS
1	Chimeric antigen receptor T-cell therapy — assessment and management of toxicities. Nature Reviews Clinical Oncology, 2018, 15, 47-62.	27.6	1,659
2	Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia, 2019, 33, 299-312.	7.2	625
3	Efficacy, Safety, and Biomarkers of Response to Azacitidine and Nivolumab in Relapsed/Refractory Acute Myeloid Leukemia: A Nonrandomized, Open-Label, Phase II Study. Cancer Discovery, 2019, 9, 370-383.	9.4	380
4	Phase 2 study of azacytidine plus sorafenib in patients with acute myeloid leukemia and FLT-3 internal tandem duplication mutation. Blood, 2013, 121, 4655-4662.	1.4	355
5	Clinical experience with the <scp>BCL</scp> 2â€inhibitor venetoclax in combination therapy for relapsed and refractory acute myeloid leukemia and related myeloid malignancies. American Journal of Hematology, 2018, 93, 401-407.	4.1	336
6	Acute myeloid leukemia: current progress and future directions. Blood Cancer Journal, 2021, 11, 41.	6.2	313
7	Tyrosine kinase inhibitor discontinuation in patients with chronic myeloid leukemia: a single-institution experience. Journal of Hematology and Oncology, 2019, 12, 1.	17.0	257
8	Safety and tolerability of guadecitabine (SGI-110) in patients with myelodysplastic syndrome and acute myeloid leukaemia: a multicentre, randomised, dose-escalation phase 1 study. Lancet Oncology, The, 2015, 16, 1099-1110.	10.7	249
9	Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: a single-centre, phase 2 study. Lancet Oncology, The, 2015, 16, 1547-1555.	10.7	245
10	The distribution of T ell subsets and the expression of immune checkpoint receptors and ligands in patients with newly diagnosed and relapsed acute myeloid leukemia. Cancer, 2019, 125, 1470-1481.	4.1	229
11	Relative survival in patients with chronic-phase chronic myeloid leukaemia in the tyrosine-kinase inhibitor era: analysis of patient data from six prospective clinical trials. Lancet Haematology,the, 2015, 2, e186-e193.	4.6	227
12	Long-term outcome of acute promyelocytic leukemia treated with all-trans-retinoic acid, arsenic trioxide, and gemtuzumab. Blood, 2017, 129, 1275-1283.	1.4	214
13	Advances in the Treatment of Acute Myeloid Leukemia: New Drugs and New Challenges. Cancer Discovery, 2020, 10, 506-525.	9.4	212
14	10-day decitabine with venetoclax for newly diagnosed intensive chemotherapy ineligible, and relapsed or refractory acute myeloid leukaemia: a single-centre, phase 2 trial. Lancet Haematology,the, 2020, 7, e724-e736.	4.6	201
15	<i>TP53</i> mutations in newly diagnosed acute myeloid leukemia: Clinicomolecular characteristics, response to therapy, and outcomes. Cancer, 2016, 122, 3484-3491.	4.1	200
16	Inotuzumab ozogamicin in combination with low-intensity chemotherapy for older patients with Philadelphia chromosome-negative acute lymphoblastic leukaemia: a single-arm, phase 2 study. Lancet Oncology, The, 2018, 19, 240-248.	10.7	192
17	Final report of a phase II study of imatinib mesylate with hyper-CVAD for the front-line treatment of adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Haematologica, 2015, 100, 653-661.	3.5	191
18	Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: long-term follow-up of a single-centre, phase 2 study. Lancet Haematology,the, 2018, 5, e618-e627.	4.6	190

#	Article	IF	CITATIONS
19	Clonal evolution and outcomes in myelofibrosis after ruxolitinib discontinuation. Blood, 2017, 130, 1125-1131.	1.4	180
20	Venetoclax Combined With FLAG-IDA Induction and Consolidation in Newly Diagnosed and Relapsed or Refractory Acute Myeloid Leukemia. Journal of Clinical Oncology, 2021, 39, 2768-2778.	1.6	173
21	Hypomethylating agents in combination with immune checkpoint inhibitors in acute myeloid leukemia and myelodysplastic syndromes. Leukemia, 2018, 32, 1094-1105.	7.2	164
22	The First-in-Class Anti-CD47 Antibody Magrolimab (5F9) in Combination with Azacitidine Is Effective in MDS and AML Patients: Ongoing Phase 1b Results. Blood, 2019, 134, 569-569.	1.4	161
23	Hyperâ€CVAD plus ponatinib versus hyperâ€CVAD plus dasatinib as frontline therapy for patients with Philadelphia chromosomeâ€positive acute lymphoblastic leukemia: A propensity score analysis. Cancer, 2016, 122, 3650-3656.	4.1	156
24	Clearance of Somatic Mutations at Remission and the Risk of Relapse in Acute Myeloid Leukemia. Journal of Clinical Oncology, 2018, 36, 1788-1797.	1.6	156
25	A consensus review on malignancyâ€associated hemophagocytic lymphohistiocytosis in adults. Cancer, 2017, 123, 3229-3240.	4.1	155
26	Phase I/II trial of the combination of midostaurin (PKC412) and 5â€azacytidine for patients with acute myeloid leukemia and myelodysplastic syndrome. American Journal of Hematology, 2015, 90, 276-281.	4.1	139
27	Safety and Efficacy of Blinatumomab in Combination With a Tyrosine Kinase Inhibitor for the Treatment of Relapsed Philadelphia Chromosome-positive Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, 897-901.	0.4	127
28	T-cell-based immunotherapy of acute myeloid leukemia: current concepts and future developments. Leukemia, 2021, 35, 1843-1863.	7.2	123
29	Genetic biomarkers of sensitivity and resistance to venetoclax monotherapy in patients with relapsed acute myeloid leukemia. American Journal of Hematology, 2018, 93, E202.	4.1	116
30	Prognostic factors and survival outcomes in patients with chronic myeloid leukemia in blast phase in the tyrosine kinase inhibitor era: Cohort study of 477 patients. Cancer, 2017, 123, 4391-4402.	4.1	114
31	Secondary mutations as mediators of resistance to targeted therapy in leukemia. Blood, 2015, 125, 3236-3245.	1.4	113
32	Outcomes of older patients with NPM1-mutated AML: current treatments and the promise of venetoclax-based regimens. Blood Advances, 2020, 4, 1311-1320.	5.2	106
33	Frontline treatment of acute myeloid leukemia in adults. Critical Reviews in Oncology/Hematology, 2017, 110, 20-34.	4.4	105
34	Prognostic and therapeutic impacts of mutant <i>TP53</i> variant allelic frequency in newly diagnosed acute myeloid leukemia. Blood Advances, 2020, 4, 5681-5689.	5.2	105
35	A cellular hierarchy framework for understanding heterogeneity and predicting drug response in acute myeloid leukemia. Nature Medicine, 2022, 28, 1212-1223.	30.7	104
36	ldarubicin, cytarabine, and nivolumab in patients with newly diagnosed acute myeloid leukaemia or high-risk myelodysplastic syndrome: a single-arm, phase 2 study. Lancet Haematology,the, 2019, 6, e480-e488.	4.6	103

#	Article	IF	CITATIONS
37	New directions for emerging therapies in acute myeloid leukemia: the next chapter. Blood Cancer Journal, 2020, 10, 107.	6.2	96
38	Sorafenib Combined with 5â€azacytidine in Older Patients with Untreated <i>FLT3</i> â€ITD Mutated Acute Myeloid Leukemia. American Journal of Hematology, 2018, 93, 1136-1141.	4.1	95
39	Outcome of patients with lowâ€risk and intermediateâ€1â€risk myelodysplastic syndrome after hypomethylating agent failure: A report on behalf of the MDS Clinical Research Consortium. Cancer, 2015, 121, 876-882.	4.1	93
40	Emerging treatment paradigms with FLT3 inhibitors in acute myeloid leukemia. Therapeutic Advances in Hematology, 2019, 10, 204062071982731.	2.5	93
41	The emerging role of immune checkpoint based approaches in AML and MDS. Leukemia and Lymphoma, 2018, 59, 790-802.	1.3	90
42	Malignancyâ€associated hemophagocytic lymphohistiocytosis in adults: Relation to hemophagocytosis, characteristics, and outcomes. Cancer, 2016, 122, 2857-2866.	4.1	88
43	Ponatinib as first-line treatment for patients with chronic myeloid leukaemia in chronic phase: a phase 2 study. Lancet Haematology,the, 2015, 2, e376-e383.	4.6	86
44	Genomic context and TP53 allele frequency define clinical outcomes in TP53-mutated myelodysplastic syndromes. Blood Advances, 2020, 4, 482-495.	5.2	86
45	Results of a Phase II Study of Crenolanib in Relapsed/Refractory Acute Myeloid Leukemia Patients (Pts) with Activating FLT3 Mutations. Blood, 2014, 124, 389-389.	1.4	86
46	Clinical implications of <i>TP53</i> mutations in myelodysplastic syndromes treated with hypomethylating agents. Oncotarget, 2016, 7, 14172-14187.	1.8	86
47	Triplet therapy with venetoclax, FLT3 inhibitor and decitabine for FLT3-mutated acute myeloid leukemia. Blood Cancer Journal, 2021, 11, 25.	6.2	85
48	Treatment with a 5-day versus a 10-day schedule of decitabine in older patients with newly diagnosed acute myeloid leukaemia: a randomised phase 2 trial. Lancet Haematology,the, 2019, 6, e29-e37.	4.6	84
49	Treated secondary acute myeloid leukemia: a distinct high-risk subset of AML with adverse prognosis. Blood Advances, 2017, 1, 1312-1323.	5.2	83
50	Venetoclax plus intensive chemotherapy with cladribine, idarubicin, and cytarabine in patients with newly diagnosed acute myeloid leukaemia or high-risk myelodysplastic syndrome: a cohort from a single-centre, single-arm, phase 2 trial. Lancet Haematology,the, 2021, 8, e552-e561.	4.6	81
51	Outcomes of <i>TP53</i> â€mutant acute myeloid leukemia with decitabine and venetoclax. Cancer, 2021, 127, 3772-3781.	4.1	80
52	Final results of a phase 2, openâ€label study of indisulam, idarubicin, and cytarabine in patients with relapsed or refractory acute myeloid leukemia and highâ€risk myelodysplastic syndrome. Cancer, 2018, 124, 2758-2765.	4.1	78
53	Concomitant targeting of BCL2 with venetoclax and MAPK signaling with cobimetinib in acute myeloid leukemia models. Haematologica, 2020, 105, 697-707.	3.5	78
54	Hyper VAD plus nelarabine in newly diagnosed adult Tâ€cell acute lymphoblastic leukemia and Tâ€lymphoblastic lymphoma. American Journal of Hematology, 2018, 93, 91-99.	4.1	74

#	Article	IF	CITATIONS
55	Immune therapies in acute myeloid leukemia: a focus on monoclonal antibodies and immune checkpoint inhibitors. Current Opinion in Hematology, 2018, 25, 136-145.	2.5	73
56	Venetoclax Plus Gilteritinib for <i>FLT3</i> -Mutated Relapsed/Refractory Acute Myeloid Leukemia. Journal of Clinical Oncology, 2022, 40, 4048-4059.	1.6	73
57	Therapeutic benefit of decitabine, a hypomethylating agent, in patients with high-risk primary myelofibrosis and myeloproliferative neoplasm in accelerated or blastic/acute myeloid leukemia phase. Leukemia Research, 2015, 39, 950-956.	0.8	69
58	Outcome of patients with relapsed/refractory acute lymphoblastic leukemia after blinatumomab failure: No change in the level of CD19 expression. American Journal of Hematology, 2018, 93, 371-374.	4.1	68
59	Cladribine and low-dose cytarabine alternating with decitabine as front-line therapy for elderly patients with acute myeloid leukaemia: a phase 2 single-arm trial. Lancet Haematology,the, 2018, 5, e411-e421.	4.6	66
60	Persistence of minimal residual disease assessed by multiparameter flow cytometry is highly prognostic in younger patients with acute myeloid leukemia. Cancer, 2017, 123, 426-435.	4.1	63
61	Inotuzumab ozogamicin in combination with lowâ€intensity chemotherapy (miniâ€HCVD) with or without blinatumomab versus standard intensive chemotherapy (HCVAD) as frontline therapy for older patients with Philadelphia chromosomeâ€negative acute lymphoblastic leukemia: A propensity score analvsis, Cancer, 2019, 125, 2579-2586.	4.1	63
62	CPX-351 (vyxeos) in AML. Leukemia and Lymphoma, 2020, 61, 288-297.	1.3	63
63	Immunotherapy in Acute Myeloid Leukemia: Where We Stand. Frontiers in Oncology, 2021, 11, 656218.	2.8	63
64	A phase 2 study of ruxolitinib in combination with azacitidine in patients with myelofibrosis. Blood, 2018, 132, 1664-1674.	1.4	62
65	FLT3 mutated acute myeloid leukemia: 2021 treatment algorithm. Blood Cancer Journal, 2021, 11, 104.	6.2	61
66	A Phase II Study Evaluating the Combination of Nivolumab (Nivo) or Ipilimumab (Ipi) with Azacitidine in Pts with Previously Treated or Untreated Myelodysplastic Syndromes (MDS). Blood, 2016, 128, 344-344.	1.4	60
67	Venetoclax with decitabine vs intensive chemotherapy in acute myeloid leukemia: A propensity score matched analysis stratified by risk of treatmentâ€related mortality. American Journal of Hematology, 2021, 96, 282-291.	4.1	59
68	Dose, schedule, safety, and efficacy of guadecitabine in relapsed or refractory acute myeloid leukemia. Cancer, 2018, 124, 325-334.	4.1	57
69	Prognostic value of measurable residual disease after venetoclax and decitabine in acute myeloid leukemia. Blood Advances, 2021, 5, 1876-1883.	5.2	56
70	Impact of the number of mutations in survival and response outcomes to hypomethylating agents in patients with myelodysplastic syndromes or myelodysplastic/myeloproliferative neoplasms. Oncotarget, 2018, 9, 9714-9727.	1.8	56
71	Lenalidomide promotes the development of <i>TP53</i> -mutated therapy-related myeloid neoplasms. Blood, 2022, 140, 1753-1763.	1.4	56
72	A phase II trial of ruxolitinib in combination with azacytidine in myelodysplastic syndrome/myeloproliferative neoplasms. American Journal of Hematology, 2018, 93, 277-285.	4.1	54

#	Article	IF	CITATIONS
73	Myeloid/lymphoid neoplasms with <i>FGFR1</i> rearrangement. Leukemia and Lymphoma, 2018, 59, 1672-1676.	1.3	53
74	Venetoclax and BCR-ABL Tyrosine Kinase Inhibitor Combinations: Outcome in Patients with Philadelphia Chromosome-Positive Advanced Myeloid Leukemias. Acta Haematologica, 2020, 143, 567-573.	1.4	53
75	Patients with post-essential thrombocythemia and post-polycythemia vera differ from patients with primary myelofibrosis. Leukemia Research, 2017, 59, 110-116.	0.8	53
76	Phase IB/II Study of Nivolumab in Combination with Azacytidine (AZA) in Patients (pts) with Relapsed Acute Myeloid Leukemia (AML). Blood, 2016, 128, 763-763.	1.4	53
77	Diagnostic Challenges of Hemophagocytic Lymphohistiocytosis. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, S105-S110.	0.4	52
78	Optimizing survival outcomes with postâ€remission therapy in acute myeloid leukemia. American Journal of Hematology, 2019, 94, 803-811.	4.1	51
79	Outcomes of acute myeloid leukemia with myelodysplasia related changes depend on diagnostic criteria and therapy. American Journal of Hematology, 2020, 95, 612-622.	4.1	51
80	Validation of the 2017 European LeukemiaNet classification for acute myeloid leukemia with <i>NPM1 </i> and <i>FLT3 </i> â€internal tandem duplication genotypes. Cancer, 2019, 125, 1091-1100.	4.1	50
81	Patterns of Resistance Differ in Patients with Acute Myeloid Leukemia Treated with Type I versus Type II FLT3 Inhibitors. Blood Cancer Discovery, 2021, 2, 125-134.	5.0	50
82	Prognostic impact of pretreatment cytogenetics in adult <scp>P</scp> hiladelphia chromosome–negative acute lymphoblastic leukemia in the era of minimal residual disease. Cancer, 2017, 123, 459-467.	4.1	49
83	Venetoclax-Based Combinations in Acute Myeloid Leukemia: Current Evidence and Future Directions. Frontiers in Oncology, 2020, 10, 562558.	2.8	49
84	Effective Menin inhibitor-based combinations against AML with MLL rearrangement or NPM1 mutation (NPM1c). Blood Cancer Journal, 2022, 12, 5.	6.2	49
85	Detectable FLT3-ITD or RAS mutation at the time of transformation from MDS to AML predicts for very poor outcomes. Leukemia Research, 2015, 39, 1367-1374.	0.8	48
86	Isavuconazole as Primary Antifungal Prophylaxis in Patients With Acute Myeloid Leukemia or Myelodysplastic Syndrome: An Open-label, Prospective, Phase 2 Study. Clinical Infectious Diseases, 2021, 72, 1755-1763.	5.8	48
87	A Phase II Study of Nivolumab or Ipilimumab with or without Azacitidine for Patients with Myelodysplastic Syndrome (MDS). Blood, 2018, 132, 465-465.	1.4	48
88	Efficacy and safety of enasidenib and azacitidine combination in patients with IDH2 mutated acute myeloid leukemia and not eligible for intensive chemotherapy. Blood Cancer Journal, 2022, 12, 10.	6.2	48
89	Clofarabine, idarubicin, and cytarabine (CIA) as frontline therapy for patients â‰ ® 0 years with newly diagnosed acute myeloid leukemia. American Journal of Hematology, 2013, 88, 961-966.	4.1	46
90	Ruxolitinib in combination with Lenalidomide as therapy for patients with myelofibrosis. Haematologica, 2015, 100, 1058-63.	3.5	46

#	Article	IF	CITATIONS
91	An improved index for diagnosis and mortality prediction in malignancy-associated hemophagocytic lymphohistiocytosis. Blood, 2022, 139, 1098-1110.	1.4	46
92	<i>TP53</i> copy number and protein expression inform mutation status across risk categories in acute myeloid leukemia. Blood, 2022, 140, 58-72.	1.4	46
93	Single cell T cell landscape and T cell receptor repertoire profiling of AML in context of PD-1 blockade therapy. Nature Communications, 2021, 12, 6071.	12.8	44
94	Hyper-CVAD regimen in combination with ofatumumab as frontline therapy for adults with Philadelphia chromosome-negative B-cell acute lymphoblastic leukaemia: a single-arm, phase 2 trial. Lancet Haematology,the, 2020, 7, e523-e533.	4.6	43
95	Poor outcomes associated with +der(22)t(9;22) and â~'9/9p in patients with Philadelphia chromosomeâ€positive acute lymphoblastic leukemia receiving chemotherapy plus a tyrosine kinase inhibitor. American Journal of Hematology, 2017, 92, 238-243.	4.1	41
96	Buparlisib, a PI3K inhibitor, demonstrates acceptable tolerability and preliminary activity in a phase I trial of patients with advanced leukemias. American Journal of Hematology, 2017, 92, 7-11.	4.1	41
97	Phase II Study of Venetoclax Added to Cladribine Plus Low-Dose Cytarabine Alternating With 5-Azacitidine in Older Patients With Newly Diagnosed Acute Myeloid Leukemia. Journal of Clinical Oncology, 2022, 40, 3848-3857.	1.6	41
98	Mutational landscape of myelodysplastic/myeloproliferative neoplasm–unclassifiable. Blood, 2018, 132, 2100-2103.	1.4	40
99	Outcomes in patients with newly diagnosed <i>TP53</i> â€mutated acute myeloid leukemia with or without venetoclaxâ€based therapy. Cancer, 2021, 127, 3541-3551.	4.1	40
100	AML-196: The First-in-Class Anti-CD47 Antibody Magrolimab in Combination with Azacitidine Is Well Tolerated and Effective in AML Patients: Phase 1b Results. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, S290.	0.4	40
101	Clinical Profile of IMGN632, a Novel CD123-Targeting Antibody-Drug Conjugate (ADC), in Patients with Relapsed/Refractory (R/R) Acute Myeloid Leukemia (AML) or Blastic Plasmacytoid Dendritic Cell Neoplasm (BPDCN). Blood, 2019, 134, 734-734.	1.4	40
102	Comparison of Multiparameter Flow Cytometry Immunophenotypic Analysis and Quantitative RT-PCR for the Detection of Minimal Residual Disease of Core Binding Factor Acute Myeloid Leukemia. American Journal of Clinical Pathology, 2016, 145, 769-777.	0.7	39
103	Relapse risk and survival in patients with FLT3 mutated acute myeloid leukemia undergoing stem cell transplantation. American Journal of Hematology, 2017, 92, 331-337.	4.1	39
104	Is there an optimal conditioning for older patients with AML receiving allogeneic hematopoietic cell transplantation?. Blood, 2020, 135, 449-452.	1.4	39
105	IDH1/IDH2 Inhibition in Acute Myeloid Leukemia. Frontiers in Oncology, 2021, 11, 639387.	2.8	39
106	Sorafenib plus intensive chemotherapy improves survival in patients with newly diagnosed, FLT3â€internal tandem duplication mutation–positive acute myeloid leukemia. Cancer, 2019, 125, 3755-3766.	4.1	38
107	Azacitidine (AZA) with Nivolumab (Nivo), and AZA with Nivo + Ipilimumab (Ipi) in Relapsed/Refractory Acute Myeloid Leukemia: A Non-Randomized, Prospective, Phase 2 Study. Blood, 2019, 134, 830-830.	1.4	38
108	A randomized phase 2 study of idarubicin and cytarabine with clofarabine or fludarabine in patients with newly diagnosed acute myeloid leukemia. Cancer, 2017, 123, 4430-4439.	4.1	37

#	Article	IF	CITATIONS
109	Outcome of patients with IDH1/2-mutated post–myeloproliferative neoplasm AML in the era of IDH inhibitors. Blood Advances, 2020, 4, 5336-5342.	5.2	37
110	A phase 1/2 study of ruxolitinib and decitabine in patients with post-myeloproliferative neoplasm acute myeloid leukemia. Leukemia, 2020, 34, 2489-2492.	7.2	37
111	High-sensitivity next-generation sequencing MRD assessment in ALL identifies patients at very low risk of relapse. Blood Advances, 2022, 6, 4006-4014.	5.2	37
112	Targeting Immune Checkpoints in Hematologic Malignancies. Pharmacological Reviews, 2016, 68, 1014-1025.	16.0	36
113	Minimal residual disease eradication with epigenetic therapy in core binding factor acute myeloid leukemia. American Journal of Hematology, 2017, 92, 845-850.	4.1	36
114	Impact of splicing mutations in acute myeloid leukemia treated with hypomethylating agents combined with venetoclax. Blood Advances, 2021, 5, 2173-2183.	5.2	35
115	Defining the Immune Checkpoint Landscape in Patients (pts) with Acute Myeloid Leukemia (AML). Blood, 2016, 128, 2900-2900.	1.4	35
116	The Combination of Quizartinib with Azacitidine or Low Dose Cytarabine Is Highly Active in Patients (Pts) with FLT3-ITD Mutated Myeloid Leukemias: Interim Report of a Phase I/II Trial. Blood, 2017, 130, 723-723.	1.4	35
117	A phase I/II study of the combination of quizartinib with azacitidine or low-dose cytarabine for the treatment of patients with acute myeloid leukemia and myelodysplastic syndrome. Haematologica, 2021, 106, 2121-2130.	3.5	34
118	Duration of cytopenias with concomitant venetoclax and azole antifungals in acute myeloid leukemia. Cancer, 2021, 127, 2489-2499.	4.1	34
119	A phase 1b/2 study of azacitidine with PDâ€L1 antibody avelumab in relapsed/refractory acute myeloid leukemia. Cancer, 2021, 127, 3761-3771.	4.1	34
120	Long-Term Safety and Efficacy of Hyper-CVAD Plus Ponatinib As Frontline Therapy for Adults with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Blood, 2019, 134, 283-283.	1.4	34
121	Venetoclax in Combination with Gilteritinib in Patients with Relapsed/Refractory Acute Myeloid Leukemia: A Phase 1b Study. Blood, 2019, 134, 3910-3910.	1.4	34
122	Effective therapy for AML with RUNX1 mutation by cotreatment with inhibitors of protein translation and BCL2. Blood, 2022, 139, 907-921.	1.4	34
123	The clinical significance of negative flow cytometry immunophenotypic results in a morphologically scored positive bone marrow in patients following treatment for acute myeloid leukemia. American Journal of Hematology, 2015, 90, 504-510.	4.1	33
124	Combinatorial targeting of XPO1 and FLT3 exerts synergistic anti-leukemia effects through induction of differentiation and apoptosis in FLT3-mutated acute myeloid leukemias: from concept to clinical trial. Haematologica, 2018, 103, 1642-1653.	3.5	33
125	Posttransplantation cyclophosphamide improves transplantation outcomes in patients with AML/MDS who are treated with checkpoint inhibitors. Cancer, 2020, 126, 2193-2205.	4.1	33
126	Single-center experience with venetoclax combinations in patients with newly diagnosed and relapsed AML evolving from MPNs. Blood Advances, 2021, 5, 2156-2164.	5.2	33

#	Article	IF	CITATIONS
127	Prognostic factors for progression in patients with Philadelphia chromosomeâ€positive acute lymphoblastic leukemia in complete molecular response within 3 months of therapy with tyrosine kinase inhibitors. Cancer, 2021, 127, 2648-2656.	4.1	33
128	<scp>Treatmentâ€free</scp> remission in patients with chronic myeloid leukemia following the discontinuation of tyrosine kinase inhibitors. American Journal of Hematology, 2022, 97, 856-864.	4.1	33
129	Hypomethylating agent and venetoclax with FLT3 inhibitor "triplet―therapy in older/unfit patients with FLT3 mutated AML. Blood Cancer Journal, 2022, 12, 77.	6.2	33
130	Prognostic significance of baseline <i>FLT3</i> â€ITD mutant allele level in acute myeloid leukemia treated with intensive chemotherapy with/without sorafenib. American Journal of Hematology, 2019, 94, 984-991.	4.1	32
131	Phase II study of azacitidine with pembrolizumab in patients with intermediateâ€1 or higherâ€risk myelodysplastic syndrome. British Journal of Haematology, 2021, 195, 378-387.	2.5	32
132	Predictors of outcomes in adults with acute myeloid leukemia and KMT2A rearrangements. Blood Cancer Journal, 2021, 11, 162.	6.2	32
133	Harnessing the Immune System Against Leukemia: Monoclonal Antibodies and Checkpoint Strategies for AML. Advances in Experimental Medicine and Biology, 2017, 995, 73-95.	1.6	31
134	Central nervous system involvement in blastic plasmacytoid dendritic cell neoplasm. Blood, 2021, 138, 1373-1377.	1.4	31
135	Venetoclax combined with <scp>FLAGâ€IDA</scp> induction and consolidation in newly diagnosed acute myeloid leukemia. American Journal of Hematology, 2022, 97, 1035-1043.	4.1	31
136	Updated Results from the Venetoclax (Ven) in Combination with Idasanutlin (Idasa) Arm of a Phase 1b Trial in Elderly Patients (Pts) with Relapsed or Refractory (R/R) AML Ineligible for Cytotoxic Chemotherapy. Blood, 2019, 134, 229-229.	1.4	30
137	Phase II study of pomalidomide in combination with prednisone in patients with myelofibrosis and significant anemia. Leukemia Research, 2014, 38, 1126-1129.	0.8	29
138	Prognostic impact of complete remission with MRD negativity in patients with relapsed or refractory AML. Blood Advances, 2020, 4, 6117-6126.	5.2	29
139	Phase I/II study of dasatinib in combination with decitabine in patients with accelerated or blast phase chronic myeloid leukemia. American Journal of Hematology, 2020, 95, 1288-1295.	4.1	28
140	Flow cytometric immunophenotypic alterations of persistent clonal haematopoiesis in remission bone marrows of patients with <i>NPM1</i> â€mutated acute myeloid leukaemia. British Journal of Haematology, 2021, 192, 1054-1063.	2.5	28
141	Extramedullary B Lymphoblastic Leukemia/Lymphoma (B-ALL/B-LBL): A Diagnostic Challenge. Clinical Lymphoma, Myeloma and Leukemia, 2014, 14, e115-e118.	0.4	27
142	Harnessing the benefits of available targeted therapies in acute myeloid leukaemia. Lancet Haematology,the, 2021, 8, e922-e933.	4.6	27
143	Venetoclax combined with induction chemotherapy in patients with newly diagnosed acute myeloid leukaemia: a post-hoc, propensity score-matched, cohort study. Lancet Haematology,the, 2022, 9, e350-e360.	4.6	26
144	Modest activity of pomalidomide in patients with myelofibrosis and significant anemia. Leukemia Research, 2013, 37, 1440-1444.	0.8	25

#	Article	IF	CITATIONS
145	Incidence of second malignancies in patients with chronic myeloid leukemia in the era of tyrosine kinase inhibitors. International Journal of Hematology, 2019, 109, 545-552.	1.6	25
146	Prediction of early (4â€week) mortality in acute myeloid leukemia with intensive chemotherapy. American Journal of Hematology, 2022, 97, 68-78.	4.1	25
147	Longâ€ŧerm followâ€up of salvage therapy using a combination of inotuzumab ozogamicin and mini–hyper VD with or without blinatumomab in relapsed/refractory Philadelphia chromosome–negative acute lymphoblastic leukemia. Cancer, 2021, 127, 2025-2038.	4.1	24
148	Superior efficacy of co-targeting GFI1/KDM1A and BRD4 against AML and post-MPN secondary AML cells. Blood Cancer Journal, 2021, 11, 98.	6.2	24
149	Tenâ€day decitabine with venetoclax versus intensive chemotherapy in relapsed or refractory acute myeloid leukemia: A propensity scoreâ€matched analysis. Cancer, 2021, 127, 4213-4220.	4.1	24
150	Outcomes of acute lymphoblastic leukemia with <i>KMT2A</i> (<i>MLL</i>) rearrangement: the MD Anderson experience. Blood Advances, 2021, 5, 5415-5419.	5.2	24
151	Results of second salvage therapy in 673 adults with acute myelogenous leukemia treated at a single institution since 2000. Cancer, 2018, 124, 2534-2540.	4.1	23
152	Prediction for sustained deep molecular response of <i>BCRâ€ABL1</i> levels in patients with chronic myeloid leukemia in chronic phase. Cancer, 2018, 124, 1160-1168.	4.1	23
153	<p>Midostaurin In Acute Myeloid Leukemia: An Evidence-Based Review And Patient Selection</p> . Cancer Management and Research, 2019, Volume 11, 8817-8828.	1.9	23
154	Inotuzumab ozogamicin with bosutinib for relapsed or refractory Philadelphia chromosome positive acute lymphoblastic leukemia or lymphoid blast phase of chronic myeloid leukemia. American Journal of Hematology, 2021, 96, 1000-1007.	4.1	23
155	Efficacy and Safety of Venetoclax in Combination with Gilteritinib for Relapsed/Refractory FLT3-Mutated Acute Myeloid Leukemia in the Expansion Cohort of a Phase 1b Study. Blood, 2020, 136, 20-22.	1.4	23
156	Phase 1 study of combinatorial sorafenib, <scp>Gâ€CSF</scp> , and plerixafor treatment in relapsed/refractory, <scp>FLT3â€ITD</scp> â€mutated acute myelogenous leukemia patients. American Journal of Hematology, 2020, 95, 1296-1303.	4.1	22
157	Treatment of Hairy Cell Leukemia During Pregnancy: Are Purine Analogues and Rituximab Viable Therapeutic Options. Clinical Lymphoma, Myeloma and Leukemia, 2013, 13, 86-89.	0.4	21
158	Targeting CD47/SIRPα in Acute Myeloid Leukemia and Myelodysplastic Syndrome: Preclinical and Clinical Developments of Magrolimab. Journal of Immunotherapy and Precision Oncology, 2021, 4, 67-71.	1.4	21
159	Overexpression of CD200 is a stem cell-specific mechanism of immune evasion in AML. , 2021, 9, e002968.		21
160	Distinct Immunophenotypes of T Cells in Bronchoalveolar Lavage Fluid From Leukemia Patients With Immune Checkpoint Inhibitors-Related Pulmonary Complications. Frontiers in Immunology, 2020, 11, 590494.	4.8	21
161	Results of a Phase 2, Open-Label Study of Idarubicin (I), Cytarabine (A) and Nivolumab (Nivo) in Patients with Newly Diagnosed Acute Myeloid Leukemia (AML) and High-Risk Myelodysplastic Syndrome (MDS). Blood, 2018, 132, 905-905.	1.4	21
162	Gilteritinib clinical activity in relapsed/refractory <scp> <i>FLT3 </i> </scp> mutated <scp>acute myeloid leukemia </scp> previously treated with <scp> <i>FLT3 </i> </scp> inhibitors. American Journal of Hematology, 2022, 97, 322-328.	4.1	21

#	Article	IF	CITATIONS
163	Characterization of <i><scp>TP</scp>53</i> mutations in lowâ€grade myelodysplastic syndromes and myelodysplastic syndromes with a nonâ€complex karyotype. European Journal of Haematology, 2017, 99, 536-543.	2.2	20
164	Outcomes with lower intensity therapy in <i>TP53</i> -mutated acute myeloid leukemia. Leukemia and Lymphoma, 2018, 59, 2238-2241.	1.3	20
165	Haploidentical transplantation for acute myeloid leukemia patients with minimal/measurable residual disease at transplantation. American Journal of Hematology, 2019, 94, 1382-1387.	4.1	20
166	Unmet clinical needs and economic burden of disease in the treatment landscape of acute myeloid leukemia. American Journal of Managed Care, 2018, 24, S347-S355.	1.1	20
167	Checkpoint inhibitors and aspergillosis in AML: the double hit hypothesis. Lancet Oncology, The, 2017, 18, 1571-1573.	10.7	19
168	Prognostic value of blasts in peripheral blood in myelofibrosis in the ruxolitinib era. Cancer, 2020, 126, 4322-4331.	4.1	19
169	The LEukemia Artificial Intelligence Program (LEAP) in chronic myeloid leukemia in chronic phase: A model to improve patient outcomes. American Journal of Hematology, 2021, 96, 241-250.	4.1	19
170	Decitabine and venetoclax for <i><scp>IDH1/2</scp>â€</i> mutated acute myeloid leukemia. American Journal of Hematology, 2021, 96, E154-E157.	4.1	19
171	Impact of frontline treatment approach on outcomes of myeloid blast phase CML. Journal of Hematology and Oncology, 2021, 14, 94.	17.0	19
172	Clonal dynamics and clinical implications of postremission clonal hematopoiesis in acute myeloid leukemia. Blood, 2021, 138, 1733-1739.	1.4	19
173	Interim Analysis of Phase II Study of Venetoclax with 10-Day Decitabine (DEC10-VEN) in Acute Myeloid Leukemia and Myelodysplastic Syndrome. Blood, 2018, 132, 286-286.	1.4	19
174	Fludarabine, Cytarabine, G-CSF and Gemtuzumab Ozogamicin (FLAG-GO) Regimen Results in Better Molecular Response and Relapse-Free Survival in Core Binding Factor Acute Myeloid Leukemia Than FLAG and Idarubicin (FLAG-Ida). Blood, 2019, 134, 290-290.	1.4	19
175	Update on Immunotherapy in AML and MDS: Monoclonal Antibodies and Checkpoint Inhibitors Paving the Road for Clinical Practice. Advances in Experimental Medicine and Biology, 2018, 995, 97-116.	1.6	18
176	Outcomes with sequential FLT3-inhibitor-based therapies in patients with AML. Journal of Hematology and Oncology, 2020, 13, 132.	17.0	18
177	Quizartinib with Decitabine +/- Venetoclax Is Highly Active in Patients (Pts) with FLT3-ITD Mutated (mut) Acute Myeloid Leukemia (AML): Clinical Report and Signaling Cytof Profiling from a Phase IB/II Trial. Blood, 2020, 136, 19-20.	1.4	18
178	P53 protein overexpression in de novo acute myeloid leukemia patients with normal diploid karyotype correlates with <i>FLT3</i> internal tandem duplication and worse relapseâ€free survival. American Journal of Hematology, 2018, 93, 1376-1383.	4.1	17
179	An effective chemotherapyâ€free regimen of ponatinib plus venetoclax for relapsed/refractory <scp>P</scp> hiladelphia chromosomeâ€positive acute lymphoblastic leukemia. American Journal of Hematology, 2021, 96, E229-E232.	4.1	17
180	Final results of a phase 2 clinical trial of LCL161, an oral SMAC mimetic for patients with myelofibrosis. Blood Advances, 2021, 5, 3163-3173.	5.2	17

#	Article	IF	CITATIONS
181	Interim Analysis of the Phase 1b/2 Study of the BCL-2 Inhibitor Venetoclax in Combination with Standard Intensive AML Induction/Consolidation Therapy with FLAG-IDA in Patients with Newly Diagnosed or Relapsed/Refractory AML. Blood, 2020, 136, 18-20.	1.4	17
182	Characteristics and outcomes of patients with blastic plasmacytoid dendritic cell neoplasm treated with frontline HCVAD. Blood Advances, 2022, 6, 3027-3035.	5.2	17
183	Malignancy-associated haemophagocytic lymphohistiocytosis in adults. Lancet Oncology, The, 2017, 18, 169-171.	10.7	16
184	Clinical Profile of IMGN632, a Novel CD123-Targeting Antibody-Drug Conjugate (ADC), in Patients with Relapsed/Refractory (R/R) Blastic Plasmacytoid Dendritic Cell Neoplasm (BPDCN). Blood, 2020, 136, 11-13.	1.4	16
185	Improved survival of patients with myelofibrosis in the last decade: Singleâ€center experience. Cancer, 2022, , .	4.1	16
186	Immune checkpoint inhibitors in acute myeloid leukemia. Best Practice and Research in Clinical Haematology, 2021, 34, 101247.	1.7	15
187	Outcome of patients with chronic myeloid leukemia in lymphoid blastic phase and Philadelphia chromosome–positive acute lymphoblastic leukemia treated with hyper VAD and dasatinib. Cancer, 2021, 127, 2641-2647.	4.1	15
188	Single-cell polyfunctional proteomics of CD4 cells from patients with AML predicts responses to anti–PD-1–based therapy. Blood Advances, 2021, 5, 4569-4574.	5.2	15
189	Ten-Day Decitabine with Venetoclax (DEC10-VEN) in Acute Myeloid Leukemia: Updated Results of a Phase II Trial. Blood, 2019, 134, 2637-2637.	1.4	15
190	Improved outcomes among newly diagnosed patients with <scp>FMSâ€like tyrosine kinase 3 internal tandem duplication</scp> mutated acute myeloid leukemia treated with contemporary therapy: Revisiting the European LeukemiaNet adverse risk classification. American Journal of Hematology, 2022, 97, 329-337.	4.1	15
191	Current and emerging therapies for patients with acute myeloid leukemia: a focus on MCL-1 and the CDK9 pathway. American Journal of Managed Care, 2018, 24, S356-S365.	1.1	15
192	Unrecognized fluid overload during induction therapy increases morbidity in patients with acute promyelocytic leukemia. Cancer, 2019, 125, 3219-3224.	4.1	14
193	Post-transplantation cyclophosphamide reduces the incidence of acute graft-versus-host disease in patients with acute myeloid leukemia/myelodysplastic syndromes who receive immune checkpoint inhibitors after allogeneic hematopoietic stem cell transplantation. , 2021, 9, e001818.		14
194	Cladribine Combined with Idarubicin and Ara-C (CLIA) As a Frontline and Salvage Treatment for Young Patients (â‰ 8 5 yrs) with Acute Myeloid Leukemia. Blood, 2016, 128, 1639-1639.	1.4	14
195	Hemophagocytic lymphohistiocytosis in adults: An under recognized entity. BBA Clinical, 2017, 7, 36-40.	4.1	13
196	Emergence of BCR–ABL1 Fusion in AML Post–FLT3 Inhibitor-Based Therapy: A Potentially Targetable Mechanism of Resistance – A Case Series. Frontiers in Oncology, 2020, 10, 588876.	2.8	13
197	Longâ€ŧerm results of lowâ€intensity chemotherapy with clofarabine or cladribine combined with lowâ€dose cytarabine alternating with decitabine in older patients with newly diagnosed acute myeloid leukemia. American Journal of Hematology, 2021, 96, 914-924.	4.1	13
198	Impact of frontline treatment approach on outcomes in patients with secondary AML with prior hypomethylating agent exposure. Journal of Hematology and Oncology, 2022, 15, 12.	17.0	13

#	Article	IF	CITATIONS
199	Immunotherapy based approaches in myelofibrosis. Expert Review of Hematology, 2017, 10, 903-914.	2.2	12
200	Chemoimmunotherapy with Inotuzumab Ozogamicin Combined with Mini-Hyper-CVD, with or without Blinatumomab, for Newly Diagnosed Older Patients with Philadelphia Chromosome-Negative Acute Lymphoblastic Leukemia: Results from a Phase II Study. Blood, 2018, 132, 36-36.	1.4	12
201	Venetoclax Dosing in Combination with Antifungal Agents: Real World Experience in Patients with Acute Myeloid Leukemia. Blood, 2019, 134, 2640-2640.	1.4	12
202	Prediction of survival with intensive chemotherapy in acute myeloid leukemia. American Journal of Hematology, 2022, 97, 865-876.	4.1	12
203	A multi-arm phase Ib/II study designed for rapid, parallel evaluation of novel immunotherapy combinations in relapsed/refractory acute myeloid leukemia. Leukemia and Lymphoma, 2022, 63, 2161-2170.	1.3	12
204	Cotargeting BCL-2 and BCL-XL for maximal efficacy in ALL. Blood, 2016, 128, 1316-1317.	1.4	11
205	Phase II study of single-agent nivolumab in patients with myelofibrosis. Annals of Hematology, 2021, 100, 2957-2960.	1.8	11
206	Venetoclax Combined with Cladribine + Low Dose AraC (LDAC) Alternating with 5-Azacytidine Produces High Rates of Minimal Residual Disease (MRD) Negative Complete Remissions (CR) in Older Patients with Newly Diagnosed Acute Myeloid Leukemia (AML). Blood, 2019, 134, 2647-2647.	1.4	11
207	Phase 2 Study of Combination of Cytarabine, Idarubicin, and Nivolumab for Initial Therapy of Patients with Newly Diagnosed Acute Myeloid Leukemia. Blood, 2017, 130, 815-815.	1.4	11
208	Venetoclax in Combination with Gilteritinib Demonstrates Molecular Clearance of FLT3 mutation in Relapsed/Refractory FLT3-Mutated Acute Myeloid Leukemia. Blood, 2021, 138, 691-691.	1.4	11
209	The Combination of Quizartinib with Azacitidine or Low Dose Cytarabine is Highly Active in Patients (Pts) withÂFLT3-ITD Mutated Myeloid Leukemias: Interim Report of a PhaseÂI/II Trial. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, S3.	0.4	10
210	Check-Point Inhibitors before and after Allogeneic Hematopoietic Stem Cell Transplant: The Double-Edge Sword. Biology of Blood and Marrow Transplantation, 2019, 25, e1-e2.	2.0	10
211	Salvage Therapy Outcomes in a Historical Cohort of Patients With Relapsed or Refractory Acute Myeloid Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, e871-e882.	0.4	10
212	Phase 2 study of hyperâ€CMAD with liposomal vincristine for patients with newly diagnosed acute lymphoblastic leukemia. American Journal of Hematology, 2020, 95, 734-739.	4.1	10
213	Clinical characteristics and outcomes in patients with acute myeloid leukemia with concurrent FLT3 â€ITD and IDH mutations. Cancer, 2021, 127, 381-390.	4.1	10
214	Development of <scp><i>TP53</i></scp> mutations over the course of therapy for acute myeloid leukemia. American Journal of Hematology, 2021, 96, 1420-1428.	4.1	10
215	Acute myeloid leukemia: advancing clinical trials and promising therapeutics. Expert Review of Hematology, 2016, 9, 433-445.	2.2	9
216	Efficacy and predictors of response of lenalidomide and rituximab in patients with treatment-naive and relapsed CLL. Blood Advances, 2019, 3, 1533-1539.	5.2	9

#	Article	IF	CITATIONS
217	Impact of <scp><i>CD33</i></scp> and <scp><i>ABCB1</i></scp> single nucleotide polymorphisms in patients with acute myeloid leukemia and advanced myeloid malignancies treated with decitabine plus gemtuzumab ozogamicin. American Journal of Hematology, 2020, 95, E225-E228.	4.1	9
218	Clinical, genomic, and transcriptomic differences between myelodysplastic syndrome/myeloproliferative neoplasm with ring sideroblasts and thrombocytosis (<scp>MDS/MPNâ€RSâ€T</scp>) and myelodysplastic syndrome with ring sideroblasts (<scp>MDSâ€RS</scp>). American Journal of Hematology, 2021, 96, E246-E249.	4.1	9
219	Gilteritinib combination therapies in pediatric patients with <i>FLT3</i> -mutated acute myeloid leukemia. Blood Advances, 2021, 5, 5215-5219.	5.2	9
220	Outcomes in Molecular Subgroups and Resistance Patterns with Ten-Day Decitabine and Venetoclax (DEC10-VEN) in Acute Myeloid Leukemia. Blood, 2019, 134, 645-645.	1.4	9
221	Phase I/II Study of Vosaroxin and Decitabine in Newly Diagnosed Older Patients (pts) with Acute Myeloid Leukemia (AML) and High Risk Myelodysplastic Syndrome (MDS). Blood, 2015, 126, 461-461.	1.4	9
222	Activity of decitabine as maintenance therapy in core binding factor acute myeloid leukemia. American Journal of Hematology, 2022, 97, 574-582.	4.1	9
223	Resistance to targeted therapies: delving into FLT3 and IDH. Blood Cancer Journal, 2022, 12, .	6.2	9
224	â€JAK–ing' up the treatment of primary myelofibrosis. Current Opinion in Hematology, 2017, 24, 115-124.	2.5	8
225	From DNA Sequencing to Clinical Trials: Finding New Targeted Drugs for Acute Myeloid Leukemia. Drugs, 2019, 79, 1177-1186.	10.9	8
226	Clinical outcomes and influence of mutation clonal dominance in oligomonocytic and classical chronic myelomonocytic leukemia. American Journal of Hematology, 2021, 96, E50-E53.	4.1	8
227	An Update on the Clinical Evaluation of Antibody-Based Therapeutics in Acute Myeloid Leukemia. Current Hematologic Malignancy Reports, 2021, 16, 89-96.	2.3	8
228	Venetoclax, FLT3 Inhibitor and Decitabine in FLT3mut Acute Myeloid Leukemia: Subgroup Analysis of a Phase II Trial. Blood, 2020, 136, 53-55.	1.4	8
229	Pneumonitis after immune checkpoint inhibitor therapies in patients with acute myeloid leukemia: A retrospective cohort study. Cancer, 2022, 128, 2736-2745.	4.1	8
230	Sorafenib and novel multikinase inhibitors in AML. Lancet Oncology, The, 2015, 16, 1582-1583.	10.7	7
231	FLT3 inhibition in acute myeloid leukaemia. Lancet Oncology, The, 2017, 18, 988-989.	10.7	7
232	A bispecific approach to improving CAR T cells in AML. Blood, 2020, 135, 703-704.	1.4	7
233	Abstract 3205: Defining the immune checkpoint landscape of acute myeloid leukemia (AML). , 2016, , .		7
234	A Phase 1b/2 Study of the CD123-Targeting Antibody-Drug Conjugate IMGN632 As Monotherapy or in Combination with Venetoclax and/or Azacitidine for Patients with CD123-Positive Acute Myeloid Leukemia. Blood, 2019, 134, 2601-2601.	1.4	7

#	Article	IF	CITATIONS
235	Phase II Study of Cladribine, Idarubicin, and Cytarabine (araC) in Patients with Acute Myeloid Leukemia (AML). Blood, 2015, 126, 2541-2541.	1.4	7
236	CARving the Path to Allogeneic CAR T Cell Therapy in Acute Myeloid Leukemia. Frontiers in Oncology, 2021, 11, 800110.	2.8	7
237	Ruxolitinib and DNA methyltransferase-inhibitors: a foray into combination regimens in myelofibrosis. Leukemia and Lymphoma, 2015, 56, 279-280.	1.3	6
238	Phase 1b, open-label study evaluating the safety and pharmacokinetics of atezolizumab (anti–PD-L1) Tj ETQq0 a acute myeloid leukemia. Leukemia and Lymphoma, 2022, 63, 2711-2714.	0 0 rgBT / 1.3	Overlock 10 6
239	Phase 1/2 study of DFPâ€10917 administered by continuous intravenous infusion in patients with recurrent or refractory acute myeloid leukemia. Cancer, 2019, 125, 1665-1673.	4.1	5
240	Phase 2 study of lenalidomide maintenance for patients with highâ€risk acute myeloid leukemia in remission. Cancer, 2021, 127, 1894-1900.	4.1	5
241	Evolutionary action score identifies a subset of TP53 mutated myelodysplastic syndrome with favorable prognosis. Blood Cancer Journal, 2021, 11, 52.	6.2	5
242	Clinicopathologic correlates and natural history of atypical chronic myeloid leukemia. Cancer, 2021, 127, 3113-3124.	4.1	5
243	Single-Cell Mass Cytometry Identifies Mechanisms of Resistance to Immunotherapy in AML. Blood, 2019, 134, 1428-1428.	1.4	5
244	Clinical use of ruxolitinib in an academic medical center in unselected patients with myeloproliferative neoplasms not on clinical study. Leukemia and Lymphoma, 2017, 58, 866-871.	1.3	4
245	Intensive chemotherapy is more effective than hypomethylating agents for the treatment of younger patients with myelodysplastic syndrome and elevated bone marrow blasts. American Journal of Hematology, 2019, 94, E188-E190.	4.1	4
246	Clonal evolution and treatment outcomes in hematopoietic neoplasms arising in patients with germline <i>RUNX1</i> mutations. American Journal of Hematology, 2020, 95, E313-E315.	4.1	4
247	Clinical value of event-free survival in acute myeloid leukemia. Blood Advances, 2020, 4, 1690-1699.	5.2	4
248	SOHO State of the Art Updates and Next Questions: Harnessing Apoptosis in AML. Clinical Lymphoma, Myeloma and Leukemia, 2022, 22, 133-139.	0.4	4
249	Interim Results of the Phase I/II Study of the Ponatinib, Venetoclax and Dexamethasone for Patients with Relapsed or Refractory Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Blood, 2020, 136, 11-12.	1.4	4
250	Efficacy of CDK9 inhibition in therapy of post-myeloproliferative neoplasm (MPN) secondary (s) AML cells. Blood Cancer Journal, 2022, 12, 23.	6.2	4
251	Urgent cytoreduction for newly diagnosed acute myeloid leukemia patients allows acquisition of pretreatment genomic data and enrollment on investigational clinical trials. American Journal of Hematology, 2022, 97, 885-894.	4.1	4
252	A new era of immuno-oncology in acute myeloid leukemia - antibody-based therapies and immune checkpoint inhibition. Best Practice and Research in Clinical Haematology, 2020, 33, 101220.	1.7	3

#	Article	IF	CITATIONS
253	A <scp>Phase I</scp> doseâ€escalation study of <scp>DCLL9718S</scp> , an antibodyâ€drug conjugate targeting <scp>C</scp> â€type lectinâ€like moleculeâ€1 (<scp>CLL</scp> â€1) in patients with acute myeloid leukemia. American Journal of Hematology, 2021, 96, E175-E179.	4.1	3
254	<scp>FLT3</scp> inhibitor based induction and allogeneic stem cell transplant in complete remission 1 improve outcomes in patients with newly diagnosed <scp>Acute Myeloid Leukemia</scp> with very low <scp>FLT3</scp> allelic burden. American Journal of Hematology, 2021, 96, E275-E279.	4.1	3
255	Lowering mTORC1 Drives CAR T-Cells Home in Acute Myeloid Leukemia. Clinical Cancer Research, 2021, 27, 5739-5741.	7.0	3
256	Ten-Day Decitabine with Venetoclax Versus Intensive Chemotherapy in Relapsed or Refractory Acute Myeloid Leukemia: A Propensity Score Matched Analysis. Blood, 2020, 136, 30-33.	1.4	3
257	Phase II Study of Cladribine and Low-Dose Cytarabine (AraC) Alternating with Decitabine in Older Patients with Acute Myeloid Leukemia (AML). Blood, 2014, 124, 3671-3671.	1.4	3
258	Infectious complications among patients with AML treated with immune checkpoint inhibitors. Clinical Lymphoma, Myeloma and Leukemia, 2021, , .	0.4	3
259	Adult cancer-related hemophagocytic lymphohistiocytosis – a challenging diagnosis: a case report. Journal of Medical Case Reports, 2017, 11, 172.	0.8	2
260	Natural history of newly diagnosed myelodysplastic syndrome with isolated inv(3)/t(3;3). American Journal of Hematology, 2020, 95, E326-E329.	4.1	2
261	Postâ€ŧransplantation donorâ€derived Sezary syndrome in a patient with <scp>A91V <i>PRF1</i></scp> variant hemophagocytic lymphohistiocytosis. American Journal of Hematology, 2021, 96, E350-E353.	4.1	2
262	Prognostic impact of conventional cytogenetics in acute myeloid leukemia treated with venetoclax and decitabine. Leukemia and Lymphoma, 2021, , 1-5.	1.3	2
263	Characteristics and Clinical Outcomes of Patients with Acute Lymphoblastic Leukemia with KMT2A (MLL) Rearrangement. Blood, 2019, 134, 2582-2582.	1.4	2
264	Myelodysplastic Syndromes with NPM1 Mutations May Constitute a Unique Entity Associated with Improved Outcomes When Treated with AML-like Chemotherapy. Blood, 2016, 128, 3171-3171.	1.4	2
265	Philadelphia–positive dimorphic blasts in mixedâ€phenotype acute leukemia with <scp><i>TET</i></scp> 2 mutation. American Journal of Hematology, 2016, 91, 647-648.	4.1	1
266	An Update on Immune Based Therapies in Acute Myeloid Leukemia: 2021 and Beyond!. Advances in Experimental Medicine and Biology, 2021, 1342, 273-295.	1.6	1
267	Checkpoint Inhibitors and Other Immune-Based Therapies in Acute Myeloid Leukemia. Cancer Journal (Sudbury, Mass), 2022, 28, 43-50.	2.0	1
268	Validation of ALFA 1200 score in patients with AML >60 years treated with double nucleoside–based low-intensity therapy. Blood Advances, 2022, 6, 5546-5549.	5.2	1
269	Validation of the ALFA-1200 model in older patients with AML treated with intensive chemotherapy. Blood Advances, 2023, 7, 828-831.	5.2	1
270	AML: The future is now or was it yesterday?. Best Practice and Research in Clinical Haematology, 2019, 32, 115.	1.7	0

#	Article	IF	CITATIONS
271	Taking aim at IDH in fitter patients with AML. Blood, 2021, 137, 1706-1707.	1.4	ο
272	A Bayesian hierarchical monitoring design for phase II cancer clinical trials: Incorporating information on response duration into monitoring rules. Statistics in Medicine, 2021, 40, 4629-4639.	1.6	0
273	Hemophagocytic Lymphohistiocytosis in the Cancer Patient. , 2020, , 1155-1161.		0
274	A nonstick marrow may help to fry leukemia. Blood, 2022, 139, 1119-1121.	1.4	0