Lei Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10065792/publications.pdf

Version: 2024-02-01

38	2,739	27	35
papers	citations	h-index	g-index
38	38	38	4490
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Rho Kinases in Embryonic Development and Stem Cell Research. Archivum Immunologiae Et Therapiae Experimentalis, 2022, 70, 4.	2.3	10
2	ROCK2 inhibition enhances the thermogenic program in white and brown fat tissue in mice. FASEB Journal, 2020, 34, 474-493.	0.5	11
3	Disruption of both ROCK1 and ROCK2 genes in cardiomyocytes promotes autophagy and reduces cardiac fibrosis during aging. FASEB Journal, 2019, 33, 7348-7362.	0.5	37
4	Disruption of ROCK1 gene restores autophagic flux and mitigates doxorubicin-induced cardiotoxicity. Oncotarget, 2018, 9, 12995-13008.	1.8	25
5	Novel Insights into the Roles of Rho Kinase in Cancer. Archivum Immunologiae Et Therapiae Experimentalis, 2016, 64, 259-278.	2.3	154
6	ROCK1 via LIM kinase regulates growth, maturation and actin based functions in mast cells. Oncotarget, 2016, 7, 16936-16947.	1.8	15
7	Dissecting the Mechanisms of Doxorubicin and Oxidative Stress-Induced Cytotoxicity: The Involvement of Actin Cytoskeleton and ROCK1. PLoS ONE, 2015, 10, e0131763.	2.5	46
8	ROCK1 Deficiency Enhances Protective Effects of Antioxidants against Apoptosis and Cell Detachment. PLoS ONE, 2014, 9, e90758.	2.5	26
9	ROCK1 isoform-specific deletion reveals a role for diet-induced insulin resistance. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E332-E343.	3.5	47
10	Distinct roles for ROCK1 and ROCK2 in the regulation of cell detachment. Cell Death and Disease, 2013, 4, e483-e483.	6.3	176
11	Dissecting the roles of ROCK isoforms in stress-induced cell detachment. Cell Cycle, 2013, 12, 1492-1500.	2.6	28
12	Rho Kinases in Cardiovascular Physiology and Pathophysiology. Journal of Cardiovascular Pharmacology, 2013, 62, 341-354.	1.9	128
13	Downregulation of doxorubicin-induced myocardial apoptosis accompanies postnatal heart maturation. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H1603-H1613.	3.2	32
14	Mechanism of fibrotic cardiomyopathy in mice expressing truncated Rhoâ€associated coiledâ€coil protein kinase 1. FASEB Journal, 2012, 26, 2105-2116.	0.5	28
15	ROCK1 functions as a critical regulator of stress erythropoiesis and survival by regulating p53. Blood, 2012, 120, 2868-2878.	1.4	29
16	Identification of Regulators of Polyploidization Presents Therapeutic Targets for Treatment of AMKL. Cell, 2012, 150, 575-589.	28.9	136
17	Regulation of the Actin Cytoskeleton by Rho Kinase Controls Antigen Presentation by CD1d. Journal of Immunology, 2012, 189, 1689-1698.	0.8	26
18	Rho Kinase Regulates the Survival and Transformation of Cells Bearing Oncogenic Forms of KIT, FLT3, and BCR-ABL. Cancer Cell, 2011, 20, 357-369.	16.8	84

#	Article	IF	Citations
19	Rho-Kinase in Development and Heart Failure: Insights From Genetic Models. Pediatric Cardiology, 2011, 32, 297-304.	1.3	40
20	Rho kinase as a therapeutic target in cardiovascular disease. Future Cardiology, 2011, 7, 657-671.	1.2	155
21	ROCK Inhibitor Y-27632 Suppresses Dissociation-Induced Apoptosis of Murine Prostate Stem/Progenitor Cells and Increases Their Cloning Efficiency. PLoS ONE, 2011, 6, e18271.	2.5	74
22	ROCK1 Functions As a Critical Regulator of Stress Erythropoiesis and Survival by Regulating p53. Blood, 2011, 118, 916-916.	1.4	11
23	ROCK1 functions as a suppressor of inflammatory cell migration by regulating PTEN phosphorylation and stability. Blood, 2010, 115, 1785-1796.	1.4	118
24	ROCK1 plays an essential role in the transition from cardiac hypertrophy to failure in mice. Journal of Molecular and Cellular Cardiology, 2010, 49, 819-828.	1.9	58
25	Disruption of ROCK1 gene attenuates cardiac dilation and improves contractile function in pathological cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 2008, 44, 551-560.	1.9	52
26	Rho kinase in the regulation of cell death and survival. Archivum Immunologiae Et Therapiae Experimentalis, 2007, 55, 61-75.	2.3	215
27	ROCKI Regulates Critical Functions in Macrophages and Neutrophils Blood, 2007, 110, 2406-2406.	1.4	0
28	ROCKI Regulates Growth, Maturation and Migration of Mast Cells Blood, 2007, 110, 2191-2191.	1.4	0
29	Activation of Rho-associated coiled-coil protein kinase 1 (ROCK-1) by caspase-3 cleavage plays an essential role in cardiac myocyte apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14495-14500.	7.1	205
30	Targeted deletion of ROCK1 protects the heart against pressure overload by inhibiting reactive fibrosis. FASEB Journal, 2006, 20, 916-925.	0.5	195
31	Disruption of Rho signaling results in progressive atrioventricular conduction defects while ventricular function remains preserved. FASEB Journal, 2004, 18, 857-859.	0.5	44
32	Inhibition of Rho family GTPases by Rho GDP dissociation inhibitor disrupts cardiac morphogenesis and inhibits cardiomyocyte proliferation. Development (Cambridge), 2002, 129, 1705-1714.	2.5	96
33	Inhibition of Rho family GTPases by Rho GDP dissociation inhibitor disrupts cardiac morphogenesis and inhibits cardiomyocyte proliferation. Development (Cambridge), 2002, 129, 1705-14.	2.5	31
34	βl integrin and organized actin filaments facilitate cardiomyocyteâ€specific RhoAâ€dependent activation of the skeletal αâ€actin promoter. FASEB Journal, 2001, 15, 785-796.	0.5	70
35	Rho kinases play an obligatory role in vertebrate embryonic organogenesis. Development (Cambridge), 2001, 128, 2953-2962.	2.5	198
36	Integrin signaling's potential for mediating gene expression in hypertrophying skeletal muscle. Journal of Applied Physiology, 2000, 88, 337-343.	2.5	103

#	Article	IF	CITATIONS
37	\hat{l}^2 ₁ -Integrin and PI 3-kinase regulate RhoA-dependent activation of skeletal \hat{l} ±-actin promoter in myoblasts. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H1736-H1743.	3.2	31
38	Insight Into Rho Kinase Isoforms in Obesity and Energy Homeostasis. Frontiers in Endocrinology, 0, 13 , .	3 . 5	5