Chunxia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10064954/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Comprehensive investigation of tobacco leaves during natural early senescence via multi-platform metabolomics analyses. Scientific Reports, 2016, 6, 37976.	3.3	93
2	Comprehensive Strategy to Construct In-House Database for Accurate and Batch Identification of Small Molecular Metabolites. Analytical Chemistry, 2018, 90, 7635-7643.	6.5	90
3	A metabolomics study delineating geographical location-associated primary metabolic changes in the leaves of growing tobacco plants by GC-MS and CE-MS. Scientific Reports, 2015, 5, 16346.	3.3	74
4	Metabolic profiling based on LC/MS to evaluate unintended effects of transgenic rice with cry1Ac and sck genes. Plant Molecular Biology, 2012, 78, 477-487.	3.9	64
5	Oral secretions from <i>Mythimna separata</i> insects specifically induce defence responses in maize as revealed by highâ€dimensional biological data. Plant, Cell and Environment, 2016, 39, 1749-1766.	5.7	61
6	Deep Annotation of Hydroxycinnamic Acid Amides in Plants Based on Ultra-High-Performance Liquid Chromatography–High-Resolution Mass Spectrometry and Its In Silico Database. Analytical Chemistry, 2018, 90, 14321-14330.	6.5	54
7	Transcriptomics and Alternative Splicing Analyses Reveal Large Differences between Maize Lines B73 and Mo17 in Response to Aphid Rhopalosiphum padi Infestation. Frontiers in Plant Science, 2017, 8, 1738.	3.6	47
8	The Application of Chromatography-Mass Spectrometry: Methods to Metabonomics. Chromatographia, 2009, 69, 23-32.	1.3	41
9	Nontargeted Screening Method for Illegal Additives Based on Ultrahigh-Performance Liquid Chromatography–High-Resolution Mass Spectrometry. Analytical Chemistry, 2016, 88, 8870-8877.	6.5	41
10	Synthesis of magnetic mesoporous metal-organic framework-5 for the effective enrichment of malachite green and crystal violet in fish samples. Journal of Chromatography A, 2018, 1560, 19-25.	3.7	41
11	Ultra-high capacity liquid chromatography chip/quadrupole time-of-flight mass spectrometry for pharmaceutical analysis. Journal of Chromatography A, 2011, 1218, 3669-3674.	3.7	34
12	High-sensitivity detection of biogenic amines with multiple reaction monitoring in fish based on benzoyl chloride derivatization. Journal of Chromatography A, 2016, 1465, 30-37.	3.7	33
13	Metabolic Profiling with Gas Chromatography–Mass Spectrometry and Capillary Electrophoresis–Mass Spectrometry Reveals the Carbon–Nitrogen Status of Tobacco Leaves Across Different Planting Areas. Journal of Proteome Research, 2016, 15, 468-476.	3.7	32
14	A Novel Strategy for Large-Scale Metabolomics Study by Calibrating Gross and Systematic Errors in Gas Chromatography–Mass Spectrometry. Analytical Chemistry, 2016, 88, 2234-2242.	6.5	28
15	Study of polar metabolites in tobacco from different geographical origins by using capillary electrophoresis–mass spectrometry. Metabolomics, 2014, 10, 805-815.	3.0	27
16	Metabolic changes in primary, secondary, and lipid metabolism in tobacco leaf in response to topping. Analytical and Bioanalytical Chemistry, 2018, 410, 839-851.	3.7	25
17	A simultaneous extraction method for metabolome and lipidome and its application in cry1Ac and sck-transgenic rice leaf treated with insecticide based on LC–MS analysis. Metabolomics, 2014, 10, 1197-1209.	3.0	24
18	Screening and Determination of Potential Risk Substances Based on Liquid Chromatography–High-Resolution Mass Spectrometry. Analytical Chemistry, 2018, 90, 8454-8461.	6.5	23

Снилхіа

#	Article	IF	CITATIONS
19	Lipidome and metabolome analysis of fresh tobacco leaves in different geographical regions using liquid chromatography–mass spectrometry. Analytical and Bioanalytical Chemistry, 2015, 407, 5009-5020.	3.7	20
20	An alignment algorithm for LC-MS-based metabolomics dataset assisted by MS/MS information. Analytica Chimica Acta, 2017, 990, 96-102.	5.4	17
21	Metabolic responses of rice leaves and seeds under transgenic backcross breeding and pesticide stress by pseudotargeted metabolomics. Metabolomics, 2015, 11, 1802-1814.	3.0	16
22	Chipâ€based nanoflow high performance liquid chromatography coupled to mass spectrometry for profiling of soybean flavonoids. Electrophoresis, 2012, 33, 2399-2406.	2.4	15
23	Nontargeted screening method for veterinary drugs and their metabolites based on fragmentation characteristics from ultrahigh-performance liquid chromatography-high-resolution mass spectrometry. Food Chemistry, 2022, 369, 130928.	8.2	15
24	Liquid chromatography/mass spectrometryâ€based metabolic profiling to elucidate chemical differences of tobacco leaves between Zimbabwe and China. Journal of Separation Science, 2011, 34, 119-126.	2.5	14
25	Quantitative structure-retention relationships model for retention time prediction of veterinary drugs in food matrixes. International Journal of Mass Spectrometry, 2018, 434, 172-178.	1.5	14
26	Detection of K-ras exon 1 mutations by constant denaturant capillary electrophoresis. Biomedical Chromatography, 2004, 18, 538-541.	1.7	13
27	Synthesis of metal-organic framework-5@chitosan material for the analysis of microcystins and nodularin based on ultra-performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 2020, 1623, 461198.	3.7	13
28	Sampleâ€directed pseudotargeted method for the metabolic profiling analysis of rice seeds based on liquid chromatography with mass spectrometry. Journal of Separation Science, 2016, 39, 247-255.	2.5	10
29	Metabolomics insights into the prenatal exposure effects of polybrominated diphenyl ethers on neonatal birth outcomes. Science of the Total Environment, 2022, 836, 155601.	8.0	9
30	Rapid identification of pathogenic bacteria by capillary electrophoretic analysis of rRNA genes. Journal of Separation Science, 2005, 28, 513-521.	2.5	8
31	A rapid GC method coupled with quadrupole or time of flight mass spectrometry for metabolomics analysis. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1160, 122355.	2.3	7
32	Fluorescent-based Single-strand Conformation Polymorphism/Heteroduplex Capillary Electrophoretic Mutation Analysis of the P53 Gene. Analytical Sciences, 2004, 20, 1001-1005.	1.6	6
33	Simultaneous genotyping of multiplex single nucleotide polymorphisms of the K-ras gene with a home-made kit. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2003, 795, 55-60.	2.3	5
34	Protein profiling analysis based on matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry and its application in typing Streptomyces isolates. Talanta, 2020, 208, 120439.	5.5	1
35	Untargeted Defining Protein–Metabolites Interaction Based on Label-Free Kinetic Size Exclusion Chromatography-Mass Spectrometry. Analytical Chemistry, 2020, 92, 7657-7665.	6.5	1
36	Nontargeted screening of veterinary drugs and their metabolites in milk based on mass defect filtering using liquid chromatography–highâ€resolution mass spectrometry. Electrophoresis, 2022, 43, 1822-1831.	2.4	1