Alain Morand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10063513/publications.pdf

Version: 2024-02-01

50	704	15	26
papers	citations	h-index	g-index
50	50	50	846
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Wavelength-scale stationary-wave integrated Fourier-transform spectrometry. Nature Photonics, 2007, 1, 473-478.	31.4	193
2	Ultra-compact microdisk resonator filters on SOI substrate. Optics Express, 2006, 14, 12814.	3.4	42
3	Light trapping in ZnO nanowire arrays covered with an absorbing shell for solar cells. Optics Express, 2014, 22, A1174.	3.4	40
4	Integrated optical waveguide polarizer on glass with a birefringent polymer overlay. IEEE Photonics Technology Letters, 1998, 10, 1599-1601.	2.5	32
5	High Q whispering gallery modes in GaAs/AlAs pillar microcavities. Optics Express, 2007, 15, 17291.	3.4	31
6	High-Qsilica microcavities on a chip: From microtoroid to microsphere. Applied Physics Letters, 2011, 99, 181123.	3.3	26
7	Propagation losses of the fundamental mode in a single line-defect photonic crystal waveguide on an InP membrane. Journal of Applied Physics, 2002, 92, 2227-2234.	2.5	25
8	Analytical Study of the Microdisk's Resonant Modes Coupling With a Waveguide Based on the Perturbation Theory. Journal of Lightwave Technology, 2004, 22, 827-832.	4.6	24
9	Application of the three-dimensional aperiodic Fourier modal method using arc elements in curvilinear coordinates. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2012, 29, 367.	1.5	22
10	Waveguide-coupled nanowire as an optical antenna. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2013, 30, 2347.	1.5	22
11	Comparison of optical properties of Si and ZnO/CdTe core/shell nanowire arrays. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 665-669.	3.5	19
12	Three-dimensional analysis of cylindrical microresonators based on the aperiodic Fourier modal method. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2008, 25, 667.	1.5	18
13	Real-space observation of spectral degeneracy breaking in a waveguide-coupled disk microresonator. Optics Letters, 2010, 35, 3168.	3.3	18
14	Light interference detection on-chip by integrated SNSPD counters. AIP Advances, 2011, 1, .	1.3	17
15	Light absorption processes and optimization of ZnO/CdTe core–shell nanowire arrays for nanostructured solar cells. Nanotechnology, 2015, 26, 075401.	2.6	17
16	SWIFTS: a groundbreaking integrated technology for high-performance spectroscopy and optical sensors. Proceedings of SPIE, 2013, , .	0.8	15
17	Optimization of all-dielectric structures for color generation. Applied Optics, 2018, 57, 3959.	1.8	14
18	All Integrated Lithium Niobate Standing Wave Fourier Transform Electro-Optic Spectrometer. Journal of Lightwave Technology, 2018, 36, 4900-4907.	4.6	14

#	Article	IF	Citations
19	Analytical study of the whispering-gallery mode in two-dimensional microgear cavity using coupled-mode theory. Journal of the Optical Society of America B: Optical Physics, 2005, 22, 1793.	2.1	13
20	Design of a compact static Fourier transform spectrometer in integrated optics based on a leaky loop structure. Optics Letters, 2009, 34, 184.	3.3	13
21	Realization of the compact static Fourier transform spectrometer LLIFTS in glass integrated optics. Optics Letters, 2009, 34, 2291.	3.3	12
22	Lithium Niobate active beam combiners: results of on-chip fringe locking, fringe scanning and high contrast integrated optics interferometry and spectrometry. Proceedings of SPIE, 2014, , .	0.8	10
23	Study of propagation modes of bent waveguides and micro-ring resonators by means of the aperiodic Fourier modal method. , 2010, , .		9
24	Fast Fourier factorization for differential method and RCWA: a powerful tool for the modeling of non-lamellar metallic diffraction gratings. Optical and Quantum Electronics, 2020, 52, 1.	3.3	9
25	Comparative Analysis of a Planar Slotted Microdisk Resonator. Journal of Lightwave Technology, 2009, 27, 4009-4016.	4.6	7
26	3D Numerical modeling of propagation losses of a single line-defect photonic crystal. Optics Communications, 2003, 221, 353-357.	2.1	6
27	Stationary Wave Integrated Fourier Transform Spectrometer (SWIFTS). Proceedings of SPIE, 2010, , .	0.8	6
28	Design and synthesis of low refractive index polymers for modulation in optical waveguides. Optical Materials, 1999, 13, 205-209.	3.6	5
29	Near IR stationary wave Fourier transform lambda meter in lithium niobate: multiplexing and improving optical sampling using spatially shifted nanogroove antenna. Applied Optics, 2021, 60, D83.	1.8	5
30	A complete physical approach to position the access waveguides of weakly confined multi-mode interference couplers. Optics Communications, 2003, 221, 317-322.	2.1	3
31	Improving the vertical radiation pattern issued from multiple nano-groove scattering centers acting as an antenna for future integrated optics Fourier transform spectrometers in the near IR. Optics Letters, 2019, 44, 542.	3.3	3
32	Room temperature operation of Er-doped silicon-rich oxide microcavities supporting high-Q whispering-gallery modes. , 2005, , .		2
33	SWIFTS Waveguide Micro-Spectrometer Integrated on Top of a 1D-NbN SNSPD Array. IEEE Transactions on Applied Superconductivity, 2011, 21, 327-331.	1.7	2
34	Expanding sampling in a SWIFTS-Lippmann spectrometer using an electro-optic Mach-Zehnder modulator. Proceedings of SPIE, $2015, \ldots$	0.8	2
35	Micro-structuration of a sol-gel architecture for channel waveguide / diffraction grating coupling. Optical Materials, 2019, 92, 36-45.	3.6	2
36	Setting Up and Assessing a New Micro-Structured Waveguiding Fluorescent Architecture on Glass Entirely Elaborated by Sol–Gel Processing. Materials, 2022, 15, 979.	2.9	2

#	Article	IF	Citations
37	High-performance high-speed spectrum analysis of laser sources with SWIFTS technology. , 2014, , .		1
38	Glass integrated optic waveguides combining optical grade dicing and ion-exchanged planar waveguide. , 2019, , .		1
39	Aperiodic differential method associated with FFF: an efficient electromagnetic computational tool for integrated optical waveguides modelization. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2020, 37, 1014.	1.5	1
40	Laser written 3D 3T spectro-interferometer: study and optimisation of the laser-written nano-antenna. , 2020, , .		1
41	Study of the microgear resonators using the Floquet-Bloch formalism. , 2005, 5722, 161.		0
42	Scanning near-field optical microscopy as a tool for the characterization of multimode interference devices. Applied Optics, 2005, 44, 2558.	2.1	0
43	Compact spectrometer modeling based on wavelength-scale stationary wave Fourier transform in integrated optic., 2008,,.		0
44	A compact SWIFTS spectrograph with a leaky loop structure. , 2008, , .		0
45	Far field scattering by a waveguide-coupled nanowire. , 2011, , .		0
46	Modeling of the whispering gallery mode in microdisk and microgear resonators using a Toeplitz matrix formalism for single-photon source. Proceedings of SPIE, 2013 , , .	0.8	0
47	Pedagogic organization of part-time studies in Network and Telecommunications at the bachelor level. , 2017, , .		0
48	Integrated Lloyd's mirror on planar waveguide facet as a spectrometer. Applied Optics, 2017, 56, 9804.	1.8	0
49	High resolution and wideband integrated optics infrared stationary-wave spectrometer fabricated by ultrafast laser inscription. , 2018 , , .		0
50	A three-telescope active integrated optics spectro-interferometric combiner in the L-band for application to high precision interferometry. , 2018, , .		0