Stéphane Priet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1006276/publications.pdf

Version: 2024-02-01

40 papers 1,998 citations

430874 18 h-index 254184 43 g-index

47 all docs

47 docs citations

47 times ranked

3328 citing authors

#	Article	IF	Citations
1	SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nature Immunology, 2012, 13, 223-228.	14.5	719
2	A placenta-specific receptor for the fusogenic, endogenous retrovirus-derived, human syncytin-2. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17532-17537.	7.1	185
3	HIV-1-Associated Uracil DNA Glycosylase Activity Controls dUTP Misincorporation in Viral DNA and Is Essential to the HIV-1 Life Cycle. Molecular Cell, 2005, 17, 479-490.	9.7	94
4	Exploring Selective Inhibition of the First Bromodomain of the Human Bromodomain and Extra-terminal Domain (BET) Proteins. Journal of Medicinal Chemistry, 2016, 59, 1634-1641.	6.4	79
5	The Human Polycomb Group EED Protein Interacts with the Integrase of Human Immunodeficiency Virus Type 1. Journal of Virology, 2003, 77, 12507-12522.	3.4	69
6	Molecular Basis for Nucleotide Conservation at the Ends of the Dengue Virus Genome. PLoS Pathogens, 2012, 8, e1002912.	4.7	66
7	The methyltransferase domain of dengue virus protein NS5 ensures efficient RNA synthesis initiation and elongation by the polymerase domain. Nucleic Acids Research, 2014, 42, 11642-11656.	14.5	61
8	Combination of ELISA screening and seroneutralisation tests to expedite Zika virus seroprevalence studies. Virology Journal, 2018, 15, 192.	3.4	55
9	Bunyaviridae RdRps: structure, motifs, and RNA synthesis machinery. Critical Reviews in Microbiology, 2017, 43, 753-778.	6.1	51
10	Zika virus epidemiology in Bolivia: A seroprevalence study in volunteer blood donors. PLoS Neglected Tropical Diseases, 2018, 12, e0006239.	3.0	50
11	Synthesis, in Vitro Antiviral Evaluation, and Stability Studies of Novel α-Borano-Nucleotide Analogues of 9-[2-(Phosphonomethoxy)ethyl]adenine and (R)-9-[2-(Phosphonomethoxy)propyl]adenine. Journal of Medicinal Chemistry, 2006, 49, 7799-7806.	6.4	49
12	Restriction by APOBEC3 proteins of endogenous retroviruses with an extracellular life cycle: ex vivo effects and in vivo"traces" on the murine IAPE and human HERV-K elements. Retrovirology, 2008, 5, 75.	2.0	39
13	Uracils as a Cellular Weapon Against Viruses and Mechanisms of Viral Escape. Current HIV Research, 2006, 4, 31-42.	0.5	36
14	Uracil within DNA: an actor of antiviral immunity. Retrovirology, 2008, 5, 45.	2.0	36
15	Functional Role of HIV-1 Virion-associated Uracil DNA Glycosylase 2 in the Correction of G:U Mispairs to G:C Pairs. Journal of Biological Chemistry, 2003, 278, 4566-4571.	3.4	31
16	Ester prodrugs of acyclic nucleoside thiophosphonates compared to phosphonates: Synthesis, antiviral activity and decomposition study. European Journal of Medicinal Chemistry, 2013, 63, 869-881.	5.5	29
17	Differential incorporation of uracil DNA glycosylase UNG2 into HIV-1, HIV-2, and SIVMAC viral particles. Virology, 2003, 307, 283-289.	2.4	23
18	New reverse genetics and transfection methods to rescue arboviruses in mosquito cells. Scientific Reports, 2017, 7, 13983.	3.3	22

#	Article	IF	Citations
19	A novel and sensitive real-time PCR system for universal detection of poxviruses. Scientific Reports, 2021, 11, 1798.	3.3	19
20	A fission yeast homologue of the human uracil-DNA-glycosylase and their roles in causing DNA damage after overexpression. Biochemical and Biophysical Research Communications, 2003, 306, 693-700.	2.1	18
21	Reversion of the Lethal Phenotype of an HIV-1 Integrase Mutant Virus by Overexpression of the Same Integrase Mutant Protein. Journal of Biological Chemistry, 2003, 278, 20724-20730.	3.4	18
22	mRNA maturation in giant viruses: variation on a theme. Nucleic Acids Research, 2015, 43, 3776-3788.	14.5	17
23	Seroprevalence of SARS-CoV-2 Among Adults in Three Regions of France Following the Lockdown and Associated Risk Factors: A Multicohort Study. SSRN Electronic Journal, 0, , .	0.4	15
24	3′-Deoxy Phosphoramidate Dinucleosides as Improved Inhibitors of Hepatitis C Virus Subgenomic Replicon and NS5B Polymerase Activity. Journal of Medicinal Chemistry, 2010, 53, 6608-6617.	6.4	13
25	Seroprevalence of SARS-CoV-2 IgG Antibodies in Corsica (France), April and June 2020. Journal of Clinical Medicine, 2020, 9, 3569.	2.4	13
26	Experimental Infection of Sand Flies by Massilia Virus and Viral Transmission by Co-Feeding on Sugar Meal. Viruses, 2019, 11, 332.	3.3	11
27	Zika Virus Circulation in Mali. Emerging Infectious Diseases, 2020, 26, 945-952.	4.3	11
28	Seroprevalence of hepatitis E virus among blood donors on Corsica, France, 2017. Eurosurveillance, 2020, 25, .	7.0	11
29	Enzymatic synthesis of acyclic nucleoside thiophosphonate diphosphates: Effect of the $\hat{l}\pm$ -phosphorus configuration on HIV-1 RT activity. Antiviral Research, 2015, 117, 122-131.	4.1	10
30	Glutamic Residue 438 within the Protease-Sensitive Subdomain of HIV-1 Reverse Transcriptase Is Critical for Heterodimer Processing in Viral Particles. Virology, 2001, 290, 300-308.	2.4	9
31	Synthesis and antiviral activity of boranophosphonate isosteres of AZT and d4T monophosphates. European Journal of Medicinal Chemistry, 2010, 45, 849-856.	5.5	9
32	Acyclic nucleoside thiophosphonates as potent inhibitors of HIV and HBV replication. European Journal of Medicinal Chemistry, 2011, 46, 4281-4288.	5 . 5	9
33	Comparison of dengue virusÂand HCV: from impact on global health to their RNA-dependent RNA polymerases. Future Virology, 2014, 9, 53-67.	1.8	9
34	Discovery, SAR study and ADME properties of methyl 4-amino-3-cyano-1-(2-benzyloxyphenyl)- $1 < i > H < i > -pyrazole-5-carboxylate$ as an HIV-1 replication inhibitor. RSC Medicinal Chemistry, 2020, 11, 577-582.	3.9	8
35	Toscana virus cap-snatching and initiation of transcription. Journal of General Virology, 2017, 98, 2676-2688.	2.9	8
36	Haiku: New paradigm for the reverse genetics of emerging RNA viruses. PLoS ONE, 2018, 13, e0193069.	2.5	7

#	Article	IF	CITATIONS
37	A Report of Zika Virus Seroprevalence in Republic of the Congo. Vector-Borne and Zoonotic Diseases, 2020, 20, 40-42.	1.5	5
38	Seroprevalence of SARS-CoV-2 IgG Antibodies and Factors Associated with SARS-CoV-2 IgG Neutralizing Activity among Primary Health Care Workers 6 Months after Vaccination Rollout in France. Viruses, 2022, 14, 957.	3.3	5
39	Severe and Irreversible Pancytopenia Associated With SARS-CoV-2 Bone Marrow Infection in a Patient With Waldenstrom Macroglobulinemia. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, e503-e505.	0.4	3
40	Synthesis and substrate properties towards HIV-1 reverse transcriptase of new diphosphate analogues of 9-[(2-phosphonomethoxy)ethyl]adenine. Antiviral Chemistry and Chemotherapy, 2018, 26, 204020661875763.	0.6	1