Peter van der Sleen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10062473/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	No growth stimulation of tropical trees by 150Âyears of CO2 fertilization but water-use efficiencyÂincreased. Nature Geoscience, 2015, 8, 24-28.	5.4	348
2	Tropical forests and global change: filling knowledge gaps. Trends in Plant Science, 2013, 18, 413-419.	4.3	130
3	The value of crossdating to retain highâ€frequency variability, climate signals, and extreme events in environmental proxies. Global Change Biology, 2016, 22, 2582-2595.	4.2	86
4	Stable isotopes in tropical tree rings: theory, methods and applications. Functional Ecology, 2017, 31, 1674-1689.	1.7	55
5	Rising synchrony controls western North American ecosystems. Global Change Biology, 2018, 24, 2305-2314.	4.2	50
6	Tree communities of white-sand and terra-firme forests of the upper Rio Negro. Acta Amazonica, 2011, 41, 521-544.	0.3	49
7	Longâ€ŧerm physiological and growth responses of Himalayan fir to environmental change are mediated by mean climate. Global Change Biology, 2020, 26, 1778-1794.	4.2	49
8	Does biomass growth increase in the largest trees? Flaws, fallacies and alternative analyses. Functional Ecology, 2017, 31, 568-581.	1.7	48
9	No evidence for consistent longâ€ŧerm growth stimulation of 13 tropical tree species: results from treeâ€ring analysis. Global Change Biology, 2015, 21, 3762-3776.	4.2	47
10	The revolution of crossdating in marine palaeoecology and palaeoclimatology. Biology Letters, 2019, 15, 20180665.	1.0	35
11	Recent CO ₂ rise has modified the sensitivity of tropical tree growth to rainfall and temperature. Global Change Biology, 2020, 26, 4028-4041.	4.2	30
12	Tree Age Distributions Reveal Large-Scale Disturbance-Recovery Cycles in Three Tropical Forests. Frontiers in Plant Science, 2016, 7, 1984.	1.7	27
13	Understanding causes of tree growth response to gap formation: â^†13C-values in tree rings reveal a predominant effect of light. Trees - Structure and Function, 2014, 28, 439-448.	0.9	21
14	Tree-ring δ180 in African mahogany (Entandrophragma utile) records regional precipitation and can be used for climate reconstructions. Global and Planetary Change, 2015, 127, 58-66.	1.6	20
15	Otolith increments in European plaice (Pleuronectes platessa) reveal temperature and density-dependent effects on growth. ICES Journal of Marine Science, 2018, 75, 1655-1663.	1.2	20
16	Long-term Bering Sea environmental variability revealed by a centennial-length biochronology of Pacific ocean perch Sebastes alutus. Climate Research, 2016, 71, 33-45.	0.4	20
17	15N in tree rings as a bio-indicator of changing nitrogen cycling in tropical forests: an evaluation at three sites using two sampling methods. Frontiers in Plant Science, 2015, 6, 229.	1.7	16
18	Non-stationary responses in anchovy (Engraulis encrasicolus) recruitment to coastal upwelling in the Southern Benguela. Marine Ecology - Progress Series, 2018, 596, 155-164.	0.9	16

Peter van der Sleen

#	Article	IF	CITATIONS
19	Potential sources of bias in the climate sensitivities of fish otolith biochronologies. Canadian Journal of Fisheries and Aquatic Sciences, 2020, 77, 1552-1563.	0.7	15
20	Herbivory and habitat association of tree seedlings in lowland evergreen rainforest on white-sand and terra-firme in the upper Rio Negro. Plant Ecology and Diversity, 2014, 7, 255-265.	1.0	10
21	Trends in tropical tree growth: reâ€analyses confirm earlier findings. Global Change Biology, 2017, 23, 1761-1762.	4.2	10
22	Ontogenetic movements of cod in Arctic fjords and the Barents Sea as revealed by otolith microchemistry. Polar Biology, 2020, 43, 409-421.	0.5	9
23	Interannual temperature variability is a principal driver of low-frequency fluctuations in marine fish populations. Communications Biology, 2022, 5, 28.	2.0	9
24	Seeing the forest through the trees: how treeâ€level measurements can help understand forest dynamics. New Phytologist, 2022, 234, 1544-1546.	3.5	6
25	Biotic Indicators for Ecological State Change in Amazonian Floodplains. BioScience, 2022, 72, 753-768.	2.2	5
26	Cats singing in the dark? Spawning aggregations of sound-producing fish in Amazonian floodplain forests. Environmental Biology of Fishes, 2020, 103, 1265-1267.	0.4	4
27	Patterns in Freshwater Fish Diversity. , 2022, , 243-255.		4
28	Lake trout growth is sensitive to spring temperature in southwest Alaska lakes. Ecology of Freshwater Fish, 2021, 30, 88-99.	0.7	3
29	Relationships among somatic growth, climate, and fisheries production in an overexploited marine fish from the Gulf of California, Mexico. Fisheries Oceanography, 2021, 30, 556-568.	0.9	1