
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1006181/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mixture Model Framework for Traumatic Brain Injury Prognosis Using Heterogeneous Clinical and Outcome Data. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 1285-1296.	3.9	2
2	Excavating FAIR Data: the Case of the Multicenter Animal Spinal Cord Injury Study (MASCIS), Blood Pressure, and Neuro-Recovery. Neuroinformatics, 2022, 20, 39-52.	1.5	10
3	Promoting FAIR Data Through Community-driven Agile Design: the Open Data Commons for Spinal Cord Injury (odc-sci.org). Neuroinformatics, 2022, 20, 203-219.	1.5	10
4	ls Neuroscience FAIR? A Call for Collaborative Standardisation of Neuroscience Data. Neuroinformatics, 2022, 20, 507-512.	1.5	23
5	Cognitive Outcome 1 Year After Mild Traumatic Brain Injury. Neurology, 2022, 98, .	1.5	36
6	Appendicular Fracture and Polytrauma Correlate with Outcome of Spinal Cord Injury: A Transforming Research and Clinical Knowledge in Spinal Cord Injury Study. Journal of Neurotrauma, 2022, , .	1.7	0
7	Using hierarchical unsupervised learning to integrate and reduce multi-level and multi-paraspinal muscle MRI data in relation to low back pain. European Spine Journal, 2022, 31, 2046-2056.	1.0	1
8	Empowering Data Sharing and Analytics through the Open Data Commons for Traumatic Brain Injury Research. Neurotrauma Reports, 2022, 3, 139-157.	0.5	9
9	Decision tree–based machine learning analysis of intraoperative vasopressor use to optimize neurological improvement in acute spinal cord injury. Neurosurgical Focus, 2022, 52, E9.	1.0	2
10	Expert-augmented automated machine learning optimizes hemodynamic predictors of spinal cord injury outcome. PLoS ONE, 2022, 17, e0265254.	1.1	9
11	Unsupervised Machine Learning on Motion Capture Data Uncovers Movement Strategies in Low Back Pain. Frontiers in Bioengineering and Biotechnology, 2022, 10, 868684.	2.0	1
12	DREADD-mediated activation of the locus coeruleus restores descending nociceptive inhibition after traumatic brain injury in rats Journal of Neurotrauma, 2022, , .	1.7	1
13	Association of day-of-injury plasma glial fibrillary acidic protein concentration and six-month posttraumatic stress disorder in patients with mild traumatic brain injury. Neuropsychopharmacology, 2022, 47, 2300-2308.	2.8	3
14	Invariance of the Bifactor Structure of Mild Traumatic Brain Injury (mTBI) Symptoms on the Rivermead Postconcussion Symptoms Questionnaire Across Time, Demographic Characteristics, and Clinical Groups: A TRACK-TBI Study. Assessment, 2021, 28, 1656-1670.	1.9	14
15	Statistical Guidelines for Handling Missing Data in Traumatic Brain Injury Clinical Research. Journal of Neurotrauma, 2021, 38, 2530-2537.	1.7	15
16	Biomarkers for Traumatic Brain Injury: Data Standards and Statistical Considerations. Journal of Neurotrauma, 2021, 38, 2514-2529.	1.7	23
17	Satisfaction with Life after Mild Traumatic Brain Injury: A TRACK-TBI Study. Journal of Neurotrauma, 2021, 38, 546-554.	1.7	24
18	Pre-Clinical Common Data Elements for Traumatic Brain Injury Research: Progress and Use Cases. Journal of Neurotrauma, 2021, 38, 1399-1410.	1.7	22

#	Article	IF	CITATIONS
19	Acute post-injury blockade of α2Î-1 calcium channel subunits prevents pathological autonomic plasticity after spinal cord injury. Cell Reports, 2021, 34, 108667.	2.9	23
20	Smaller Regional Brain Volumes Predict Posttraumatic Stress Disorder at 3 Months After Mild Traumatic Brain Injury. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6, 352-359.	1.1	8
21	Validity of the Brief Test of Adult Cognition by Telephone in Level 1 Trauma Center Patients Six Months Post-Traumatic Brain Injury: A TRACK-TBI Study. Journal of Neurotrauma, 2021, 38, 1048-1059.	1.7	15
22	Diagnostic blood RNA profiles for human acute spinal cord injury. Journal of Experimental Medicine, 2021, 218, .	4.2	31
23	Machine intelligence identifies soluble TNFa as a therapeutic target for spinal cord injury. Scientific Reports, 2021, 11, 3442.	1.6	11
24	Latent Profile Analysis of Neuropsychiatric Symptoms and Cognitive Function of Adults 2 Weeks After Traumatic Brain Injury. JAMA Network Open, 2021, 4, e213467.	2.8	22
25	Modeling and Bioinformatics Identify Responders to G-CSF in Patients With Amyotrophic Lateral Sclerosis. Frontiers in Neurology, 2021, 12, 616289.	1.1	2
26	Association of Sex and Age With Mild Traumatic Brain Injury–Related Symptoms: A TRACK-TBI Study. JAMA Network Open, 2021, 4, e213046.	2.8	74
27	A Systematic Review of Safety Reporting in Acute Spinal Cord Injury Clinical Trials: Challenges and Recommendations. Journal of Neurotrauma, 2021, 38, 2047-2054.	1.7	4
28	Phenotyping the Spectrum of Traumatic Brain Injury: A Review and Pathway to Standardization. Journal of Neurotrauma, 2021, 38, 3222-3234.	1.7	22
29	Tractography-Pathology Correlations in Traumatic Brain Injury: A TRACK-TBI Study. Journal of Neurotrauma, 2021, 38, 1620-1631.	1.7	9
30	Prognostic Value of Hemorrhagic Brainstem Injury on Early Computed Tomography: A TRACK-TBI Study. Neurocritical Care, 2021, 35, 335-346.	1.2	4
31	Functional Outcomes Over the First Year After Moderate to Severe Traumatic Brain Injury in the Prospective, Longitudinal TRACK-TBI Study. JAMA Neurology, 2021, 78, 982.	4.5	103
32	Comparing the Quality of Life after Brain Injury-Overall Scale and Satisfaction with Life Scale as Outcome Measures for Traumatic Brain Injury Research. Journal of Neurotrauma, 2021, 38, 3352-3363.	1.7	3
33	Pathological Computed Tomography Features Associated With Adverse Outcomes After Mild Traumatic Brain Injury. JAMA Neurology, 2021, 78, 1137.	4.5	53
34	Reproducible analysis of disease space via principal components using the novel R package syndRomics. ELife, 2021, 10, .	2.8	22
35	The impact of deep space radiation on cognitive performance: From biological sex to biomarkers to countermeasures. Science Advances, 2021, 7, eabg6702.	4.7	23
36	FAIR Data Reuse in Traumatic Brain Injury: Exploring Inflammation and Age as Moderators of Recovery in the TRACK-TBI Pilot. Frontiers in Neurology, 2021, 12, 768735.	1.1	4

#	Article	IF	CITATIONS
37	Topological network analysis of patient similarity for precision management of acute blood pressure in spinal cord injury. ELife, 2021, 10, .	2.8	15
38	Quantifying the kinematic features of dexterous finger movements in nonhuman primates with markerless tracking. , 2021, 2021, 6110-6115.		0
39	Data Dissemination: Shortening the Long Tail of Traumatic Brain Injury Dark Data. Journal of Neurotrauma, 2020, 37, 2414-2423.	1.7	13
40	Clinical Implementation of Novel Spinal Cord Perfusion Pressure Protocol in Acute Traumatic Spinal Cord Injury at U.S. Level I Trauma Center: TRACK-SCI Study. World Neurosurgery, 2020, 133, e391-e396.	0.7	29
41	FAIR SCI Ahead: The Evolution of the Open Data Commons for Pre-Clinical Spinal Cord Injury Research. Journal of Neurotrauma, 2020, 37, 831-838.	1.7	27
42	Exploration of surgical blood pressure management and expected motor recovery in individuals with traumatic spinal cord injury. Spinal Cord, 2020, 58, 377-386.	0.9	24
43	Injury volume extracted from MRI predicts neurologic outcome in acute spinal cord injury: A prospective TRACK-SCI pilot study. Journal of Clinical Neuroscience, 2020, 82, 231-236.	0.8	6
44	Loss of diffuse noxious inhibitory control after traumatic brain injury in rats: A chronic issue. Experimental Neurology, 2020, 333, 113428.	2.0	16
45	The evolution of white matter microstructural changes after mild traumatic brain injury: A longitudinal DTI and NODDI study. Science Advances, 2020, 6, eaaz6892.	4.7	106
46	Polytrauma Is Associated with Increased Three- and Six-Month Disability after Traumatic Brain Injury: A TRACK-TBI Pilot Study. Neurotrauma Reports, 2020, 1, 32-41.	0.5	14
47	Point-of-Care Platform Blood Biomarker Testing of Glial Fibrillary Acidic Protein versus S100 Calcium-Binding Protein B for Prediction of Traumatic Brain Injuries: A Transforming Research and Clinical Knowledge in Traumatic Brain Injury Study. Journal of Neurotrauma, 2020, 37, 2460-2467.	1.7	72
48	The first 24 h: opioid administration in people with spinal cord injury and neurologic recovery. Spinal Cord, 2020, 58, 1080-1089.	0.9	11
49	Analysis of Normal High-Frequency Intracranial Pressure Values and Treatment Threshold in Neurocritical Care Patients. JAMA Neurology, 2020, 77, 1150.	4.5	23
50	Monitoring Outcome after Hospital-Presenting Milder Spectrum Pediatric Traumatic Brain Injury Using the Glasgow Outcome Scale-Extended, Pediatric Revision. Journal of Neurotrauma, 2020, 37, 1627-1636.	1.7	7
51	Transforming Research and Clinical Knowledge in Spinal Cord Injury (TRACK-SCI): an overview of initial enrollment and demographics. Neurosurgical Focus, 2020, 48, E6.	1.0	12
52	In Reply: Ultra-Early (<12 Hours) Surgery Correlates With Higher Rate of American Spinal Injury Association Impairment Scale Conversion After Cervical Spinal Cord Injury. Neurosurgery, 2019, 85, E401-E402.	0.6	1
53	Association between plasma GFAP concentrations and MRI abnormalities in patients with CT-negative traumatic brain injury in the TRACK-TBI cohort: a prospective multicentre study. Lancet Neurology, The, 2019, 18, 953-961.	4.9	150
54	Differential fracture response to traumatic brain injury suggests dominance of neuroinflammatory response in polytrauma. Scientific Reports, 2019, 9, 12199.	1.6	28

#	Article	IF	CITATIONS
55	Risk of Posttraumatic Stress Disorder and Major Depression in Civilian Patients After Mild Traumatic Brain Injury. JAMA Psychiatry, 2019, 76, 249.	6.0	170
56	Origins of Neural Progenitor Cell-Derived Axons Projecting Caudally after Spinal Cord Injury. Stem Cell Reports, 2019, 13, 105-114.	2.3	21
57	Chondroitinase improves anatomical and functional outcomes after primate spinal cord injury. Nature Neuroscience, 2019, 22, 1269-1275.	7.1	98
58	Enhanced descending pain facilitation in acute traumatic brain injury. Experimental Neurology, 2019, 320, 112976.	2.0	15
59	Recovery After Mild Traumatic Brain Injury in Patients Presenting to US Level I Trauma Centers. JAMA Neurology, 2019, 76, 1049.	4.5	247
60	Convolutional Neural Network–Based Automated Segmentation of the Spinal Cord and Contusion Injury: Deep Learning Biomarker Correlates of Motor Impairment in Acute Spinal Cord Injury. American Journal of Neuroradiology, 2019, 40, 737-744.	1.2	44
61	Divergent Six Month Functional Recovery Trajectories and Predictors after Traumatic Brain Injury: Novel Insights from the Citicoline Brain Injury Treatment Trial Study. Journal of Neurotrauma, 2019, 36, 2521-2532.	1.7	14
62	Testing a Multivariate Proteomic Panel for Traumatic Brain Injury Biomarker Discovery: A TRACK-TBI Pilot Study. Journal of Neurotrauma, 2019, 36, 100-110.	1.7	40
63	MR Imaging for Assessing Injury Severity and Prognosis in Acute Traumatic Spinal Cord Injury. Radiologic Clinics of North America, 2019, 57, 319-339.	0.9	33
64	Self-Assisted Standing Enabled by Non-Invasive Spinal Stimulation after Spinal Cord Injury. Journal of Neurotrauma, 2019, 36, 1435-1450.	1.7	143
65	Ultra-Early (<12 Hours) Surgery Correlates With Higher Rate of American Spinal Injury Association Impairment Scale Conversion After Cervical Spinal Cord Injury. Neurosurgery, 2019, 85, 199-203.	0.6	69
66	Performance Evaluation of a Multiplex Assay for Simultaneous Detection of Four Clinically Relevant Traumatic Brain Injury Biomarkers. Journal of Neurotrauma, 2019, 36, 182-187.	1.7	63
67	Value of aggressive surgical and intensive care unit in elderly patients with traumatic spinal cord injury. Neurosurgical Focus, 2019, 46, E3.	1.0	20
68	Analysis of high-frequency PbtO2 measures in traumatic brain injury: insights into the treatment threshold. Journal of Neurosurgery, 2019, 131, 1216-1226.	0.9	13
69	Restorative effects of human neural stem cell grafts on the primate spinal cord. Nature Medicine, 2018, 24, 484-490.	15.2	236
70	MRI and biomechanics multidimensional data analysis reveals R ₂ â€R _{1Ï} as an early predictor of cartilage lesion progression in knee osteoarthritis. Journal of Magnetic Resonance Imaging, 2018, 47, 78-90.	1.9	40
71	Motor Evoked Potentials Correlate With Magnetic Resonance Imaging and Early Recovery After Acute Spinal Cord Injury. Neurosurgery, 2018, 82, 870-876.	0.6	34
72	Effect of Progesterone on Cerebral Vasospasm and Neurobehavioral Outcomes in a Rodent Model of Subarachnoid Hemorrhage. World Neurosurgery, 2018, 110, e150-e159.	0.7	17

#	Article	IF	CITATIONS
73	Neurotrauma as a big-data problem. Current Opinion in Neurology, 2018, 31, 702-708.	1.8	25
74	Assessment of Follow-up Care After Emergency Department Presentation for Mild Traumatic Brain Injury and Concussion. JAMA Network Open, 2018, 1, e180210.	2.8	119
75	Pre-Clinical Testing of Therapies for Traumatic Brain Injury. Journal of Neurotrauma, 2018, 35, 2737-2754.	1.7	68
76	Using multidimensional topological data analysis to identify traits of hip osteoarthritis. Journal of Magnetic Resonance Imaging, 2018, 48, 1046-1058.	1.9	12
77	Concordance of common data elements for assessment of subjective cognitive complaints after mild-traumatic brain injury: a TRACK-TBI Pilot Study. Brain Injury, 2018, 32, 1071-1078.	0.6	21
78	COMT ValMet polymorphism is associated with post-traumatic stress disorder and functional outcome following mild traumatic brain injury. Journal of Clinical Neuroscience, 2017, 35, 109-116.	0.8	43
79	Pulmonary outcomes following specialized respiratory management for acute cervical spinal cord injury: a retrospective analysis. Spinal Cord, 2017, 55, 559-565.	0.9	33
80	A data-driven approach for evaluating multi-modal therapy in traumatic brain injury. Scientific Reports, 2017, 7, 42474.	1.6	16
81	Inflammation-induced GluA1 trafficking and membrane insertion of Ca2+ permeable AMPA receptors in dorsal horn neurons is dependent on spinal tumor necrosis factor, PI3 kinase and protein kinase A. Experimental Neurology, 2017, 293, 144-158.	2.0	28
82	Validating Multi-Dimensional Outcome Assessment Using the Traumatic Brain Injury Common Data Elements: An Analysis of the TRACK-TBI Pilot Study Sample. Journal of Neurotrauma, 2017, 34, 3158-3172.	1.7	59
83	Multivariate Analysis of MRI Biomarkers for Predicting Neurologic Impairment in Cervical Spinal Cord Injury. American Journal of Neuroradiology, 2017, 38, 648-655.	1.2	44
84	Assessments of sensory plasticity after spinal cord injury across species. Neuroscience Letters, 2017, 652, 74-81.	1.0	3
85	<i>Apolipoprotein E epsilon 4 (<scp>APOE</scp>â€</i> ε <i>4)</i> genotype is associated with decreased 6â€month verbal memory performance after mild traumatic brain injury. Brain and Behavior, 2017, 7, e00791.	1.0	34
86	Translational Stroke Research. Stroke, 2017, 48, 2632-2637.	1.0	108
87	Emergency department blood alcohol level associates with injury factors and six-month outcome after uncomplicated mild traumatic brain injury. Journal of Clinical Neuroscience, 2017, 45, 293-298.	0.8	20
88	Temporal profile of care following mild traumatic brain injury: predictors of hospital admission, follow-up referral and six-month outcome. Brain Injury, 2017, 31, 1820-1829.	0.6	15
89	Safety and effectiveness of early chemical deep venous thrombosis prophylaxis after spinal cord injury: pilot prospective data. Neurosurgical Focus, 2017, 43, E21.	1.0	23
90	Poster 466: Prospective Determination of Clinical Neurologic Level of Injury with Early MRI Following Blunt Traumatic Spinal Cord Injury. PM and R, 2017, 9, S280.	0.9	0

#	Article	IF	CITATIONS
91	DRD2 C957T polymorphism is associated with improved 6-month verbal learning following traumatic brain injury. Neurogenetics, 2017, 18, 29-38.	0.7	24
92	What Is Being Trained? How Divergent Forms of Plasticity Compete To Shape Locomotor Recovery after Spinal Cord Injury. Journal of Neurotrauma, 2017, 34, 1831-1840.	1.7	23
93	Selective Serotonin Reuptake Inhibitors for Treating Neurocognitive and Neuropsychiatric Disorders Following Traumatic Brain Injury: An Evaluation of Current Evidence. Brain Sciences, 2017, 7, 93.	1.1	47
94	Developing a data sharing community for spinal cord injury research. Experimental Neurology, 2017, 295, 135-143.	2.0	48
95	Uncovering precision phenotype-biomarker associations in traumatic brain injury using topological data analysis. PLoS ONE, 2017, 12, e0169490.	1.1	73
96	RegenBase: a knowledge base of spinal cord injury biology for translational research. Database: the Journal of Biological Databases and Curation, 2016, 2016, baw040.	1.4	14
97	Failure of Mean Arterial Pressure Goals to Improve Outcomes Following Penetrating Spinal Cord Injury. Neurosurgery, 2016, 79, 708-714.	0.6	26
98	A novel inhibitor of p75-neurotrophin receptor improves functional outcomes in two models of traumatic brain injury. Brain, 2016, 139, 1762-1782.	3.7	44
99	A novel antagonist of p75NTR reduces peripheral expansion and CNS trafficking of pro-inflammatory monocytes and spares function after traumatic brain injury. Journal of Neuroinflammation, 2016, 13, 88.	3.1	38
100	Application of 3D Printing for Smart Objects with Embedded Electronic Sensors and Systems. Advanced Materials Technologies, 2016, 1, 1600013.	3.0	167
101	In Response to. Clinical Journal of Sport Medicine, 2016, 26, 345.	0.9	Ο
102	COMT Val 158 Met polymorphism is associated with nonverbal cognition following mild traumatic brain injury. Neurogenetics, 2016, 17, 31-41.	0.7	33
103	Brain tissue oxygen tension and its response to physiological manipulations: influence of distance from injury site in a swine model of traumatic brain injury. Journal of Neurosurgery, 2016, 125, 1217-1228.	0.9	34
104	Multidimensional Analysis of Magnetic Resonance Imaging Predicts Early Impairment in Thoracic and Thoracolumbar Spinal Cord Injury. Journal of Neurotrauma, 2016, 33, 954-962.	1.7	37
105	A Unilateral Cervical Spinal Cord Contusion Injury Model in Non-Human Primates (Macaca mulatta). Journal of Neurotrauma, 2016, 33, 439-459.	1.7	42
106	Influence of Spinal Cord Integrity on Gait Control in Human Spinal Cord Injury. Neurorehabilitation and Neural Repair, 2016, 30, 562-572.	1.4	23
107	AMPA Receptor Phosphorylation and Synaptic Colocalization on Motor Neurons Drive Maladaptive Plasticity below Complete Spinal Cord Injury. ENeuro, 2015, 2, ENEURO.0091-15.2015.	0.9	23
108	Mean Arterial Blood Pressure Correlates with Neurological Recovery after Human Spinal Cord Injury: Analysis of High Frequency Physiologic Data. Journal of Neurotrauma, 2015, 32, 1958-1967.	1.7	187

#	Article	IF	CITATIONS
109	Genetic Data Sharing and Privacy. Neuroinformatics, 2015, 13, 1-6.	1.5	26
110	The Brain and Spinal Injury Center score: a novel, simple, and reproducible method for assessing the severity of acute cervical spinal cord injury with axial T2-weighted MRI findings. Journal of Neurosurgery: Spine, 2015, 23, 495-504.	0.9	132
111	Noninvasive Reactivation of Motor Descending Control after Paralysis. Journal of Neurotrauma, 2015, 32, 1968-1980.	1.7	236
112	Large animal and primate models of spinal cord injury for the testing of novel therapies. Experimental Neurology, 2015, 269, 154-168.	2.0	75
113	Association of a common genetic variant within ANKK1 with six-month cognitive performance after traumatic brain injury. Neurogenetics, 2015, 16, 169-180.	0.7	40
114	CCR2 Antagonism Alters Brain Macrophage Polarization and Ameliorates Cognitive Dysfunction Induced by Traumatic Brain Injury. Journal of Neuroscience, 2015, 35, 748-760.	1.7	195
115	Complications and outcomes of vasopressor usage in acute traumatic central cord syndrome. Journal of Neurosurgery: Spine, 2015, 23, 574-580.	0.9	45
116	Topological data analysis for discovery in preclinical spinal cord injury and traumatic brain injury. Nature Communications, 2015, 6, 8581.	5.8	153
117	Pronounced species divergence in corticospinal tract reorganization and functional recovery after lateralized spinal cord injury favors primates. Science Translational Medicine, 2015, 7, 302ra134.	5.8	148
118	Leveraging biomedical informatics for assessing plasticity and repair in primate spinal cord injury. Brain Research, 2015, 1619, 124-138.	1.1	16
119	Metaplasticity and behavior: how training and inflammation affect plastic potential within the spinal cord and recovery after injury. Frontiers in Neural Circuits, 2014, 8, 100.	1.4	49
120	Development of a Database for Translational Spinal Cord Injury Research. Journal of Neurotrauma, 2014, 31, 1789-1799.	1.7	100
121	The Irvine, Beatties, and Bresnahan (IBB) Forelimb Recovery Scale: An Assessment of Reliability and Validity. Frontiers in Neurology, 2014, 5, 116.	1.1	47
122	Peripheral noxious stimulation reduces withdrawal threshold to mechanical stimuli after spinal cord injury: Role of tumor necrosis factor alpha and apoptosis. Pain, 2014, 155, 2344-2359.	2.0	57
123	Big data from small data: data-sharing in the 'long tail' of neuroscience. Nature Neuroscience, 2014, 17, 1442-1447.	7.1	227
124	Minimum Information about a Spinal Cord Injury Experiment: A Proposed Reporting Standard for Spinal Cord Injury Experiments. Journal of Neurotrauma, 2014, 31, 1354-1361.	1.7	74
125	Combined SCI and TBI: Recovery of forelimb function after unilateral cervical spinal cord injury (SCI) is retarded by contralateral traumatic brain injury (TBI), and ipsilateral TBI balances the effects of SCI on paw placement. Experimental Neurology, 2013, 248, 136-147.	2.0	35
126	Demonstrating efficacy in preclinical studies of cellular therapies for spinal cord injury — How much is enough?. Experimental Neurology, 2013, 248, 30-44.	2.0	52

#	Article	IF	CITATIONS
127	Magnetic resonance imaging improves 3â€month outcome prediction in mild traumatic brain injury. Annals of Neurology, 2013, 73, 224-235.	2.8	340
128	A principal component analysis of coagulation after trauma. Journal of Trauma and Acute Care Surgery, 2013, 74, 1223-1230.	1.1	96
129	Derivation of Multivariate Syndromic Outcome Metrics for Consistent Testing across Multiple Models of Cervical Spinal Cord Injury in Rats. PLoS ONE, 2013, 8, e59712.	1.1	65
130	A principal component analysis of coagulation after trauma. Journal of Trauma and Acute Care Surgery, 2013, 74, 1223-1230.	1.1	42
131	Impact of Behavioral Control on the Processing of Nociceptive Stimulation. Frontiers in Physiology, 2012, 3, 262.	1.3	37
132	Central nociceptive sensitization vs. spinal cord training: opposing forms of plasticity that dictate function after complete spinal cord injury. Frontiers in Physiology, 2012, 3, 396.	1.3	29
133	Maladaptive spinal plasticity opposes spinal learning and recovery in spinal cord injury. Frontiers in Physiology, 2012, 3, 399.	1.3	68
134	Methods for Functional Assessment After C7 Spinal Cord Hemisection in the Rhesus Monkey. Neurorehabilitation and Neural Repair, 2012, 26, 556-569.	1.4	43
135	Quantitative CT Improves Outcome Prediction in Acute Traumatic Brain Injury. Journal of Neurotrauma, 2012, 29, 735-746.	1.7	77
136	Tumor Necrosis Factor Alpha Mediates GABA _{A} Receptor Trafficking to the Plasma Membrane of Spinal Cord Neurons <i>In Vivo</i> . Neural Plasticity, 2012, 2012, 1-11.	1.0	29
137	Clial Tumor Necrosis Factor Alpha (TNFα) Generates Metaplastic Inhibition of Spinal Learning. PLoS ONE, 2012, 7, e39751.	1.1	49
138	Animal Models of Neurologic Disorders: A Nonhuman Primate Model of Spinal Cord Injury. Neurotherapeutics, 2012, 9, 380-392.	2.1	80
139	Syndromics: A Bioinformatics Approach for Neurotrauma Research. Translational Stroke Research, 2011, 2, 438-454.	2.3	28
140	Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury. Nature Neuroscience, 2010, 13, 1505-1510.	7.1	346
141	AMPAâ€receptor trafficking and injuryâ€induced cell death. European Journal of Neuroscience, 2010, 32, 290-297.	1.2	71
142	A Novel Method for Assessing Proximal and Distal Forelimb Function in the Rat: the Irvine, Beatties and Bresnahan (IBB) Forelimb Scale. Journal of Visualized Experiments, 2010, , .	0.2	38
143	Cell Death after Spinal Cord Injury Is Exacerbated by Rapid TNFα-Induced Trafficking of GluR2-Lacking AMPARs to the Plasma Membrane. Journal of Neuroscience, 2008, 28, 11391-11400.	1.7	205
144	Group I Metabotropic Glutamate Receptors Control Metaplasticity of Spinal Cord Learning through a Protein Kinase C-Dependent Mechanism. Journal of Neuroscience, 2008, 28, 11939-11949.	1.7	43

#	Article	IF	CITATIONS
145	BDNF and learning: Evidence that instrumental training promotes learning within the spinal cord by up-regulating BDNF expression. Neuroscience, 2007, 148, 893-906.	1.1	111
146	Two chronic motor training paradigms differentially influence acute instrumental learning in spinally transected rats. Behavioural Brain Research, 2007, 180, 95-101.	1.2	37
147	The impact of morphine after a spinal cord injury. Behavioural Brain Research, 2007, 179, 281-293.	1.2	56
148	Developmental stage of oligodendrocytes determines their response to activated microglia in vitro. Journal of Neuroinflammation, 2007, 4, 28.	3.1	54
149	Exposure to intermittent nociceptive stimulation under pentobarbital anesthesia disrupts spinal cord function in rats. Psychopharmacology, 2007, 192, 243-252.	1.5	17
150	Nociceptive plasticity inhibits adaptive learning in the spinal cord. Neuroscience, 2006, 141, 421-431.	1.1	87
151	Instrumental Learning Within the Spinal Cord: Underlying Mechanisms and Implications for Recovery After Injury. Behavioral and Cognitive Neuroscience Reviews, 2006, 5, 191-239.	3.9	75
152	Instrumental Learning Within the Rat Spinal Cord: Localization of the Essential Neural Circuit Behavioral Neuroscience, 2005, 119, 538-547.	0.6	34
153	A Sublethal Dose of TNFα Potentiates Kainate-Induced Excitotoxicity in Optic Nerve Oligodendrocytes. Neurochemical Research, 2005, 30, 867-875.	1.6	15
154	Uncontrollable Stimulation Undermines Recovery after Spinal Cord Injury. Journal of Neurotrauma, 2004, 21, 1795-1817.	1.7	95
155	A Simple Post Hoc Transformation that Improves the Metric Properties of the BBB Scale for Rats with Moderate to Severe Spinal Cord Injury. Journal of Neurotrauma, 2004, 21, 1601-1613.	1.7	81
156	Monitoring Recovery after Injury: Procedures for Deriving the Optimal Test Window. Journal of Neurotrauma, 2004, 21, 109-118.	1.7	14
157	Brief exposure to a mild stressor enhances morphine-conditioned place preference in male rats. Psychopharmacology, 2004, 175, 47-52.	1.5	12
158	The Behavioral Deficit Observed Following Noncontingent Shock in Spinalized Rats Is Prevented by the Protein Synthesis Inhibitor Cycloheximide Behavioral Neuroscience, 2004, 118, 653-658.	0.6	27
159	Instrumental learning within the spinal cord: V. Evidence the behavioral deficit observed after noncontingent nociceptive stimulation reflects an intraspinal modification. Behavioural Brain Research, 2003, 141, 159-170.	1.2	41
160	GABAA receptor activation is involved in noncontingent shock inhibition of instrumental conditioning in spinal rats Behavioral Neuroscience, 2003, 117, 799-812.	0.6	27
161	Instrumental learning within the spinal cord: IV. Induction and retention of the behavioral deficit observed after noncontingent shock Behavioral Neuroscience, 2002, 116, 1032-1051.	0.6	63
162	Instrumental learning within the spinal cord. Physiology and Behavior, 2002, 77, 259-267.	1.0	60

#	Article	IF	CITATIONS
163	Instrumental learning within the spinal cord: IV. Induction and retention of the behavioral deficit observed after noncontingent shock. Behavioral Neuroscience, 2002, 116, 1032-51.	0.6	59
164	Shock-induced hyperalgesia: IV. Generality Journal of Experimental Psychology, 2001, 27, 219-238.	1.9	27
165	Pain and negative affect: evidence the inverse benzodiazepine agonist DMCM inhibits pain and learning in rats. Psychopharmacology, 2001, 153, 180-190.	1.5	10
166	Shock-induced hyperalgesia: IV. Generality. Journal of Experimental Psychology, 2001, 27, 219-38.	1.9	13
167	Pharmacological Management of Acute Spinal Cord Injury: Overlooked Opportunities to Enhance Long-Term Neurological Function. SSRN Electronic Journal, 0, , .	0.4	1
168	Granulocyte-Colony Stimulating Factor: Encouraging Outcome in Sporadic ALS - Modelling and Bioinformatics Identify Substantial Filgrastim Responders. SSRN Electronic Journal, 0, , .	0.4	0