Yi Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10058880/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lignin-based hydrogels: A review of preparation, properties, and application. International Journal of Biological Macromolecules, 2019, 135, 1006-1019.	7.5	184
2	Chitosan-based multifunctional flexible hemostatic bio-hydrogel. Acta Biomaterialia, 2021, 136, 170-183.	8.3	68
3	Preparation of magnetic hydrogel microspheres of lignin derivate for application in water. Science of the Total Environment, 2019, 685, 847-855.	8.0	66
4	Fractionation of alkali lignin by organic solvents for biodegradable microsphere through self-assembly. Bioresource Technology, 2019, 289, 121640.	9.6	46
5	Super-swelling lignin-based biopolymer hydrogels for soil water retention from paper industry waste. International Journal of Biological Macromolecules, 2019, 135, 815-820.	7.5	42
6	A robust regenerated cellulose-based dual stimuli-responsive hydrogel as an intelligent switch for controlled drug delivery. International Journal of Biological Macromolecules, 2021, 176, 448-458.	7.5	39
7	Combined liquid hot water with sodium carbonate-oxygen pretreatment to improve enzymatic saccharification of reed. Bioresource Technology, 2020, 297, 122498.	9.6	38
8	The hydrothermal-alkaline/oxygen two-step pretreatment combined with the addition of surfactants reduced the amount of cellulase for enzymatic hydrolysis of reed. Bioresource Technology, 2020, 308, 123324.	9.6	37
9	A mussel-inspired flexible chitosan-based bio-hydrogel as a tailored medical adhesive. International Journal of Biological Macromolecules, 2021, 189, 183-193.	7.5	29
10	Improving air barrier, water vapor permeability properties of cellulose paper by layer-by-layer assembly of graphene oxide. Carbohydrate Polymers, 2021, 253, 117227.	10.2	24
11	Improving enzymatic hydrolysis efficiency of corncob residue through sodium sulfite pretreatment. Applied Microbiology and Biotechnology, 2019, 103, 7795-7804.	3.6	21
12	The bead-like Li3V2(PO4)3/NC nanofibers based on the nanocellulose from waste reed for long-life Li-ion batteries. Carbohydrate Polymers, 2020, 237, 116134.	10.2	16
13	Study on the Effect of 1-Butanol Soluble Lignin on Temperature-Sensitive Gel. Polymers, 2018, 10, 1109.	4.5	14
14	A renewable membrane with high ionic conductivity and thermal stability for Li-ion batteries. Journal of Power Sources, 2022, 521, 230947.	7.8	14
15	A degradable membrane based on lignin-containing cellulose for high-energy lithium-ion batteries. International Journal of Biological Macromolecules, 2022, 213, 690-698.	7.5	13
16	Fabrication of the superhydrophobic natural cellulosic paper with different wettability and oil/water separation application. Journal of Applied Polymer Science, 2021, 138, 50371.	2.6	10
17	Study on the derivation of cassava residue and its application in surface sizing. International Journal of Biological Macromolecules, 2019, 128, 80-84.	7.5	9
18	High-performance cellulose acetate-based gas barrier films via tailoring reduced graphene oxide nanosheets. International Journal of Biological Macromolecules, 2022, 209, 1450-1456.	7.5	9

YI CHENG

#	Article	IF	CITATIONS
19	Biomimic-Inspired and Recyclable Nanogel for Contamination Removal from Water and the Application in Treating Bleaching Effluents. Industrial & Engineering Chemistry Research, 2020, 59, 8622-8631.	3.7	7
20	Composited Gels from Nature Growing Scaffold: Synthesis, Properties, and Application. ACS Applied Materials & Interfaces, 2021, 13, 5498-5507.	8.0	7
21	Balancing the decomposable behavior and wet tensile mechanical property of cellulose-based wet wipe substrates by the aqueous adhesive. International Journal of Biological Macromolecules, 2020, 164, 1898-1907.	7.5	6
22	Going Nano with Confined Effects to Construct Pomegranate-like Cathode for High-Energy and High-Power Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 28934-28942.	8.0	3