

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1005698/publications.pdf Version: 2024-02-01

Yueli

#	Article	IF	CITATIONS
1	A multifunctional Cu6Sn5 interface layer for dendritic-free lithium metal anode. Journal of Colloid and Interface Science, 2022, 605, 223-230.	9.4	8
2	Application and research of current collector for lithium-sulfur battery. Ionics, 2022, 28, 1713-1738.	2.4	6
3	Green energy application technology of litchi pericarp-derived carbon material with high performance. Journal of Cleaner Production, 2021, 286, 124960.	9.3	18
4	Effect of citric acid-to-nitrate ratio on combustion synthesis of CuFe2O4 for sodium-ion storage. Journal of Materials Science: Materials in Electronics, 2021, 32, 94-101.	2.2	3
5	Simple preparation of nano-anatase titanium dioxide from cold rolled titanic acid waste liquid. Ionics, 2021, 27, 2119-2126.	2.4	1
6	Research Progress toward Room Temperature Sodium Sulfur Batteries: A Review. Molecules, 2021, 26, 1535.	3.8	27
7	Research status and perspectives of rechargeable Li-CO2 battery. Ionics, 2021, 27, 2785-2802.	2.4	6
8	Elucidating electrochemical intercalation mechanisms of biomassâ€derived hard carbon in sodiumâ€∤potassiumâ€ion batteries. , 2021, 3, 541-553.		64
9	Insight into the Redox Reaction Heterogeneity within Secondary Particles of Nickel-Rich Layered Cathode Materials. ACS Applied Materials & Interfaces, 2021, 13, 27074-27084.	8.0	20
10	Back Cover Image, Volume 3, Number 4, August 2021. , 2021, 3, ii.		0
11	Design high performance biomass-derived renewable carbon material for electric energy storage system. Journal of Cleaner Production, 2021, 309, 127391.	9.3	10
12	Preparation and Electrochemical Performance of a S-Se-Ti3C2Tx/TiO2 Cathode. Jom, 2021, 73, 4103.	1.9	0
13	Pt3Ni@C Composite Material Designed and Prepared Based on Volcanic Catalytic Curve and Its High-Performance Static Lithium Polysulfide Semiliquid Battery. Nanomaterials, 2021, 11, 3416.	4.1	0
14	Design of ultralong-life Li–CO ₂ batteries with IrO ₂ nanoparticles highly dispersed on nitrogen-doped carbon nanotubes. Journal of Materials Chemistry A, 2020, 8, 3763-3770.	10.3	58
15	Low-Cost Fabrication of Silicon Nanowires by Molten Salt Electrolysis and Their Electrochemical Performances as Lithium-Ion Battery Anodes. Jom, 2020, 72, 2245-2249.	1.9	4
16	Simple and Efficient Combustion Method for Preparation of High-Performance Co3O4 Anode Materials for Lithium-Ion Batteries. Jom, 2020, 72, 3296-3302.	1.9	6
17	Synthesis of Spherical Al-Doping LiMn2O4 via a High-Pressure Spray-Drying Method as Cathode Materials for Lithium-Ion Batteries. Jom, 2019, 71, 608-612.	1.9	16
18	Morphology-selected synthesis of copper ferrite via spray drying with excellent sodium storage properties. Ceramics International, 2019, 45, 20796-20802.	4.8	23

Xue Li

#	Article	IF	CITATIONS
19	The role of boracic polyanion substitution on structure and high voltage electrochemical performance of Ni-Rich cathode materials for lithium ion batteries. Journal of Alloys and Compounds, 2019, 805, 1288-1296.	5.5	35
20	Simple solution-combustion synthesis of Fe2TiO5 nanomaterials with enhanced lithium storage properties. Ceramics International, 2019, 45, 11382-11387.	4.8	18
21	Enhanced High-Voltage Cycling Stability of Nickel-Rich Cathode Materials by Surface Modification Using LaFeO3 Ionic Conductor. Jom, 2019, 71, 1975-1980.	1.9	9
22	The transport properties of sodium-ion in the low potential platform region of oatmeal-derived hard carbon for sodium-ion batteries. Journal of Alloys and Compounds, 2019, 787, 229-238.	5.5	47
23	A simple preparation route for polysilicate titanium salt from spent titanium solutions. Water Science and Technology, 2019, 80, 1347-1356.	2.5	4
24	A lanthanide-based coordination polymer as lithium ion battery anode with high cyclic stability. Materials Letters, 2019, 238, 171-174.	2.6	14
25	Self-organized TiO2 network decorated with SnO2 nanoparticles as an anode for lithium-ion batteries. Journal of Alloys and Compounds, 2018, 752, 68-75.	5.5	15
26	Molten salt electrolytic synthesis of silicon-copper composite nanowires with enhanced performances as lithium ion battery anode. Journal of Alloys and Compounds, 2018, 751, 307-315.	5.5	23
27	A facile structure design of LiNi0.90Co0.07Al0.03O2 as advanced cathode materials for lithium ion batteries via carbonation decomposition of NaAl(OH)4 solution. Journal of Alloys and Compounds, 2018, 739, 335-344.	5.5	31
28	One-Dimensional Cu _{2–<i>x</i>} Se Nanorods as the Cathode Material for High-Performance Aluminum-Ion Battery. ACS Applied Materials & Interfaces, 2018, 10, 17942-17949.	8.0	111
29	An inorganic–organic hybrid supramolecular framework as a high-performance anode for lithium-ion batteries. Dalton Transactions, 2018, 47, 5166-5170.	3.3	22
30	Combustion combined with ball milling to produce nanoscale La2O3 coated on LiMn2O4 for optimized Li-ion storage performance at high temperature. Journal of Applied Electrochemistry, 2018, 48, 135-145.	2.9	33
31	Expanded biomass-derived hard carbon with ultra-stable performance in sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 1513-1522.	10.3	198
32	Fast solution combustion synthesis of porous NaFeTi3O8 with superior sodium storage properties. Electronic Materials Letters, 2018, 14, 23-29.	2.2	3
33	Honeycomb-like Hard Carbon Derived from Pine Pollen as High-Performance Anode Material for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 42796-42803.	8.0	129
34	Enhancing the high-voltage performances of Ni-rich cathode materials by homogeneous La2O3 coating via a freeze-drying assisted method. Ceramics International, 2018, 44, 14660-14666.	4.8	35
35	The impact of the crystal structure and morphology on the electrochemical performance for CuFe2O4 in sodium ion batteries. Ceramics International, 2018, 44, 18471-18477.	4.8	16
36	Beneficial effect of incorporating Ni-rich oxide and layered over-lithiated oxide into high-energy-density cathode materials for lithium-ion batteries. Journal of Power Sources, 2018, 400, 341-349.	7.8	40

Xue Li

#	Article	IF	CITATIONS
37	A photochromic zinc-based coordination polymer for a Li-ion battery anode with high capacity and stable cycling stability. Dalton Transactions, 2018, 47, 13222-13228.	3.3	24
38	TiO2–MoS2 hybrid nano composites with 3D network architecture as binder-free flexible electrodes for lithium ion batteries. Journal of Materials Science: Materials in Electronics, 2017, 28, 9519-9527.	2.2	21
39	IrO2 nanoparticles highly dispersed on nitrogen-doped carbon nanotubes as an efficient cathode catalyst for high-performance Li-O2 batteries. Ceramics International, 2017, 43, 14082-14089.	4.8	46
40	The application of plasma treatment for Ti3+ modified TiO2 nanowires film electrode with enhanced lithium-storage properties. Electrochimica Acta, 2016, 211, 395-403.	5.2	21
41	Superiority of the bi-phasic mixture of a tin-based alloy nanocomposite as the anode for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 3794-3800.	10.3	43
42	Synthesis of Oneâ€Dimensional Copper Sulfide Nanorods as Highâ€Performance Anode in Lithium Ion Batteries. ChemSusChem, 2014, 7, 3328-3333.	6.8	80
43	Fast Solution-Combustion Synthesis of Nitrogen-Modified Li ₄ Ti ₅ O ₁₂ Nanomaterials with Improved Electrochemical Performance. ACS Applied Materials & Interfaces, 2014, 6, 7895-7901.	8.0	68
44	Synthesis of single crystalline hexagonal nanobricks of LiNi1/3Co1/3Mn1/3O2 with high percentage of exposed {010} active facets as high rate performance cathode material for lithium-ion battery. Journal of Materials Chemistry A, 2013, 1, 3860.	10.3	195
45	Facile synthesis of hollow Cu2Sb@C core–shell nanoparticles as a superior anode material for lithium ion batteries. Journal of Materials Chemistry, 2011, 21, 18517.	6.7	32