Yunxia Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10056962/publications.pdf Version: 2024-02-01

Υπινικ Ηπ

#	Article	IF	CITATIONS
1	High-responsivity photodetector based on scrolling monolayer MoS ₂ hybridized with carbon quantum dots. Nanotechnology, 2022, 33, 105301.	2.6	10
2	High-Performance Broadband Photoelectrochemical Photodetectors Based on Ultrathin Bi ₂ O ₂ S Nanosheets. ACS Applied Materials & Interfaces, 2022, 14, 7175-7183.	8.0	78
3	Engineering the Optoelectronic Properties of 2D Hexagonal Boron Nitride Monolayer Films by Sulfur Substitutional Doping. ACS Applied Materials & Interfaces, 2022, 14, 16453-16461.	8.0	10
4	Atomically Thin Hexagonal Boron Nitride and Its Heterostructures. Advanced Materials, 2021, 33, e2000769.	21.0	71
5	Highâ€Performance van der Waals Metalâ€Insulatorâ€Semiconductor Photodetector Optimized with Valence Band Matching. Advanced Functional Materials, 2021, 31, 2104359.	14.9	45
6	Ultralow Power Optical Synapses Based on MoS ₂ Layers by Indiumâ€Induced Surface Charge Doping for Biomimetic Eyes. Advanced Materials, 2021, 33, e2104960.	21.0	53
7	Mixed-Dimensional InSe–Si Heterojunction Nanostructures for Self-Powered Broadband Photodetectors. ACS Applied Nano Materials, 2021, 4, 12932-12936.	5.0	6
8	Ultralow Power Optical Synapses Based on MoS ₂ Layers by Indiumâ€Induced Surface Charge Doping for Biomimetic Eyes (Adv. Mater. 52/2021). Advanced Materials, 2021, 33, .	21.0	4
9	Synthesis of Multilayer InSe0.82Te0.18 alloy for high performance near-infrared photodetector. Journal of Alloys and Compounds, 2020, 815, 152375.	5.5	5
10	Tunable electronic properties of multilayer InSe by alloy engineering for high performance self-powered photodetector. Journal of Colloid and Interface Science, 2020, 565, 239-244.	9.4	11
11	A mixed-dimensional 1D Se–2D InSe van der Waals heterojunction for high responsivity self-powered photodetectors. Nanoscale Horizons, 2020, 5, 564-572.	8.0	88
12	Enhanced Piezoelectric Effect Derived from Grain Boundary in MoS ₂ Monolayers. Nano Letters, 2020, 20, 201-207.	9.1	66
13	Intrinsic Dipole Coupling in 2D van der Waals Ferroelectrics for Gate ontrolled Switchable Rectifier. Advanced Electronic Materials, 2020, 6, 1900975.	5.1	27
14	Contact engineering high-performance ambipolar multilayer tellurium transistors. Nanotechnology, 2020, 31, 115204.	2.6	13
15	Monolayer hydrophilic MoS ₂ with strong charge trapping for atomically thin neuromorphic vision systems. Materials Horizons, 2020, 7, 3316-3324.	12.2	26
16	Multilayer InSe–Te van der Waals Heterostructures with an Ultrahigh Rectification Ratio and Ultrasensitive Photoresponse. ACS Applied Materials & Interfaces, 2020, 12, 37313-37319.	8.0	47
17	High-Performance Devices Based on InSe–In _{1–<i>x</i>} Ga <i>_x</i> Se Van der Waals Heterojunctions. ACS Applied Materials & Interfaces, 2020, 12, 24978-24983.	8.0	11
18	Synthesis of High-Quality Multilayer Hexagonal Boron Nitride Films on Au Foils for Ultrahigh Rejection Ratio Solar-Blind Photodetection. ACS Applied Materials & Interfaces, 2020, 12, 28351-28359.	8.0	27

Υυνχιά Ηυ

#	Article	IF	CITATIONS
19	The role of hybrid dielectric interfaces in improving the performance of multilayer InSe transistors. Journal of Materials Chemistry C, 2020, 8, 6701-6709.	5.5	8
20	Ultrafast and Sensitive Self-Powered Photodetector Featuring Self-Limited Depletion Region and Fully Depleted Channel with van der Waals Contacts. ACS Nano, 2020, 14, 9098-9106.	14.6	120
21	Robust Piezo-Phototronic Effect in Multilayer γ-InSe for High-Performance Self-Powered Flexible Photodetectors. ACS Nano, 2019, 13, 7291-7299.	14.6	118
22	Enhanced photoresponse of monolayer MoS ₂ through hybridization with carbon quantum dots as efficient photosensitizer. 2D Materials, 2019, 6, 035025.	4.4	24
23	Synthesis of Superlattice InSe Nanosheets with Enhanced Electronic and Optoelectronic Performance. ACS Applied Materials & Interfaces, 2019, 11, 18511-18516.	8.0	13
24	Shape evolution of two dimensional hexagonal boron nitride single domains on Cu/Ni alloy and its applications in ultraviolet detection. Nanotechnology, 2019, 30, 245706.	2.6	31
25	Synchronous Enhancement for Responsivity and Response Speed in In ₂ Se ₃ Photodetector Modulated by Piezoresistive Effect. ACS Applied Materials & Interfaces, 2019, 11, 47098-47105.	8.0	29
26	Hollow Spherical Nanoshell Arrays of 2D Layered Semiconductor for Highâ€Performance Photodetector Device. Advanced Functional Materials, 2018, 28, 1705153.	14.9	50
27	Vertical MoSe ₂ –MoO <i> _x </i> p–n heterojunction and its application in optoelectronics. Nanotechnology, 2018, 29, 045202.	2.6	11
28	Synthesis of Two-Dimensional Alloy Ga _{0.84} In _{0.16} Se Nanosheets for High-Performance Photodetector. ACS Applied Materials & Interfaces, 2018, 10, 43299-43304.	8.0	17
29	Temperature-dependent growth of few layer <i>î²</i> -InSe and <i>î±</i> -In ₂ Se ₃ single crystals for optoelectronic device. Semiconductor Science and Technology, 2018, 33, 125002.	2.0	29
30	Intrinsic Two-Dimensional Ferroelectricity with Dipole Locking. Physical Review Letters, 2018, 120, 227601.	7.8	322
31	Phase-Engineering-Driven Enhanced Electronic and Optoelectronic Performance of Multilayer In ₂ Se ₃ Nanosheets. ACS Applied Materials & Interfaces, 2018, 10, 27584-27588.	8.0	51
32	High-performance and flexible photodetectors based on chemical vapor deposition grown two-dimensional In ₂ Se ₃ nanosheets. Nanotechnology, 2018, 29, 445205.	2.6	54
33	A Dual-Band Multilayer InSe Self-Powered Photodetector with High Performance Induced by Surface Plasmon Resonance and Asymmetric Schottky Junction. ACS Nano, 2018, 12, 8739-8747.	14.6	206
34	An efficient WSe ₂ /Co _{0.85} Se/graphene hybrid catalyst for electrochemical hydrogen evolution reaction. RSC Advances, 2016, 6, 51725-51731.	3.6	51