Ilaria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10051605/publications.pdf

Version: 2024-02-01

759233 794594 678 22 12 19 citations h-index g-index papers 22 22 22 1367 docs citations citing authors all docs times ranked

#	Article	IF	Citations
1	Clinical outcomes, Kadish-INSICA staging and therapeutic targeting of somatostatin receptor 2 in olfactory neuroblastoma. European Journal of Cancer, 2022, 162, 221-236.	2.8	22
2	Theragnostic in neuroendocrine tumors. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2022, 65, .	0.7	2
3	177Lu-PRRT in advanced gastrointestinal neuroendocrine tumors: 10-year follow-up of the IRST phase II prospective study. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 152-160.	6.4	20
4	Combined use of 177Lu-DOTATATE and metronomic capecitabine (Lu-X) in FDG-positive gastro-entero-pancreatic neuroendocrine tumors. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 3260-3267.	6.4	29
5	Activity and Safety of Immune Checkpoint Inhibitors in Neuroendocrine Neoplasms: A Systematic Review and Meta-Analysis. Pharmaceuticals, 2021, 14, 476.	3.8	16
6	606P Novel miRNA-based assay for GEP-NENs management. Annals of Oncology, 2020, 31, S505.	1,2	0
7	Biomarkers for Pancreatic Neuroendocrine Neoplasms (PanNENs) Management—An Updated Review. Frontiers in Oncology, 2020, 10, 831.	2.8	27
8	A Whole Body Dosimetry Protocol for Peptide-Receptor Radionuclide Therapy (PRRT): 2D Planar Image and Hybrid 2D+3D SPECT/CT Image Methods. Journal of Visualized Experiments, 2020, , .	0.3	8
9	Early and delayed evaluation of solid tumours with 64Cu-ATSM PET/CT. Nuclear Medicine Communications, 2017, 38, 340-346.	1.1	8
10	Peptide receptor radionuclide therapy in the management of gastrointestinal neuroendocrine tumors: efficacy profile, safety, and quality of life. OncoTargets and Therapy, 2017, Volume 10, 551-557.	2.0	37
11	Reply to H.J.A. Adams et al and E. Laffon et al. Journal of Clinical Oncology, 2017, 35, 920-923.	1.6	3
12	Prognostic Evaluation of Disease Outcome in Solid Tumors Investigated With 64Cu-ATSM PET/CT. Clinical Nuclear Medicine, 2016, 41, e87-e92.	1.3	32
13	Baseline Metabolic Tumor Volume Predicts Outcome in High–Tumor-Burden Follicular Lymphoma: A Pooled Analysis of Three Multicenter Studies. Journal of Clinical Oncology, 2016, 34, 3618-3626.	1.6	231
14	Baseline Metabolic Tumour Volume Predicts Outcome in High Tumor Burden Follicular Lymphoma. A Pooled Analysis of Three Multicenter Studies. Blood, 2015, 126, 3919-3919.	1.4	0
15	Usefulness of 64Cu-ATSM in Head and Neck Cancer. Clinical Nuclear Medicine, 2014, 39, e59-e63.	1.3	36
16	FDG and other radiopharmaceuticals in the evaluation of liver lesions. Clinical and Translational Imaging, 2014, 2, 115-127.	2.1	2
17	Incidentally Detected Increased FDG Uptake in Bowel and its Correlation with Hystopathological Data: Our Experience in a Case Series Study. Current Radiopharmaceuticals, 2014, 7, 107-114.	0.8	3
18	PET radiopharmaceuticals for imaging of tumor hypoxia: a review of the evidence. American Journal of Nuclear Medicine and Molecular Imaging, 2014, 4, 365-84.	1.0	109

#	Article	IF	CITATION
19	811 poster 64CU-ATSM PET/CT AND 18F-FDG-PET/CT IN THE STAGING AND TARGET VOLUME DELINEATION FOR HEAD AND NECK CANCER (H&N) Radiotherapy and Oncology, 2011, 99, S316-S317.	0.6	O
20	I-123 MIBG Scintigraphy and 68Ga-DOTANOC PET/CT Negative But F-18 DOPA PET/CT Positive Pheochromocytoma. Clinical Nuclear Medicine, 2011, 36, 124-126.	1.3	9
21	Prominent role of low HDL-cholesterol in explaining the high prevalence of the metabolic syndrome in polycystic ovary syndrome. Nutrition, Metabolism and Cardiovascular Diseases, 2009, 19, 797-804.	2.6	40
22	Monogenic polycystic ovary syndrome due to a mutation in the lamin A/C gene is sensitive to thiazolidinediones but not to metformin. European Journal of Endocrinology, 2008, 159, 347-353.	3.7	44