Jianyong Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10050873/publications.pdf Version: 2024-02-01

Ιμανονς Υμ

#	Article	IF	CITATIONS
1	Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nature Communications, 2014, 5, 5802.	5.8	860
2	Superelastic and Superhydrophobic Nanofiber-Assembled Cellular Aerogels for Effective Separation of Oil/Water Emulsions. ACS Nano, 2015, 9, 3791-3799.	7.3	612
3	Porous materials for sound absorption. Composites Communications, 2018, 10, 25-35.	3.3	432
4	Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Science Advances, 2018, 4, eaas8925.	4.7	414
5	Continuous, Spontaneous, and Directional Water Transport in the Trilayered Fibrous Membranes for Functional Moisture Wicking Textiles. Small, 2018, 14, e1801527.	5.2	213
6	Ultrahighâ€Waterâ€Content, Superelastic, and Shapeâ€Memory Nanofiberâ€Assembled Hydrogels Exhibiting Pressureâ€Responsive Conductivity. Advanced Materials, 2017, 29, 1700339.	11.1	206
7	Super hygroscopic nanofibrous membrane-based moisture pump for solar-driven indoor dehumidification. Nature Communications, 2020, 11, 3302.	5.8	143
8	Ultrastrong, Superelastic, and Lamellar Multiarch Structured ZrO ₂ –Al ₂ O ₃ Nanofibrous Aerogels with High-Temperature Resistance over 1300 °C. ACS Nano, 2020, 14, 15616-15625.	7.3	131
9	Biomimetic Fibrous Murray Membranes with Ultrafast Water Transport and Evaporation for Smart Moisture-Wicking Fabrics. ACS Nano, 2019, 13, 1060-1070.	7.3	120
10	Silica nanofibrous membranes with robust flexibility and thermal stability for high-efficiency fine particulate filtration. RSC Advances, 2012, 2, 12216.	1.7	119
11	Carbonâ€Nanoplated CoS@TiO ₂ Nanofibrous Membrane: An Interfaceâ€Engineered Heterojunction for Highâ€Efficiency Electrocatalytic Nitrogen Reduction. Angewandte Chemie - International Edition, 2019, 58, 18903-18907.	7.2	119
12	Hierarchical Cellular Structured Ceramic Nanofibrous Aerogels with Temperature-Invariant Superelasticity for Thermal Insulation. ACS Applied Materials & Interfaces, 2019, 11, 29056-29064.	4.0	118
13	Spiderâ€Webâ€Inspired PM _{0.3} Filters Based on Self‣ustained Electrostatic Nanostructured Networks. Advanced Materials, 2020, 32, e2002361.	11.1	118
14	Stable Confinement of Black Phosphorus Quantum Dots on Black Tin Oxide Nanotubes: A Robust, Doubleâ€Active Electrocatalyst toward Efficient Nitrogen Fixation. Angewandte Chemie - International Edition, 2019, 58, 16439-16444.	7.2	112
15	Soft Zr-doped TiO2 Nanofibrous Membranes with Enhanced Photocatalytic Activity for Water Purification. Scientific Reports, 2017, 7, 1636.	1.6	101
16	Environmentally Friendly and Breathable Fluorinated Polyurethane Fibrous Membranes Exhibiting Robust Waterproof Performance. ACS Applied Materials & Interfaces, 2017, 9, 29302-29310.	4.0	101
17	Environmentally friendly waterborne polyurethane nanofibrous membranes by emulsion electrospinning for waterproof and breathable textiles. Chemical Engineering Journal, 2022, 427, 130925.	6.6	101
18	3D Superelastic Scaffolds Constructed from Flexible Inorganic Nanofibers with Selfâ€Fitting Capability and Tailorable Gradient for Bone Regeneration. Advanced Functional Materials, 2019, 29, 1901407.	7.8	100

JIANYONG YU

#	Article	IF	CITATIONS
19	Hydrophobic Fibrous Membranes with Tunable Porous Structure for Equilibrium of Breathable and Waterproof Performance. Advanced Materials Interfaces, 2016, 3, 1600516.	1.9	98
20	A Biomimetic Transpiration Textile for Highly Efficient Personal Drying and Cooling. Advanced Functional Materials, 2021, 31, 2008705.	7.8	98
21	In-situ electrospinning of thymol-loaded polyurethane fibrous membranes for waterproof, breathable, and antibacterial wound dressing application. Journal of Colloid and Interface Science, 2021, 592, 310-318.	5.0	98
22	Optimized colorimetric sensor strip for mercury(<scp>ii</scp>) assay using hierarchical nanostructured conjugated polymers. Journal of Materials Chemistry A, 2014, 2, 645-652.	5.2	94
23	Hierarchical Porous Structured SiO ₂ /SnO ₂ Nanofibrous Membrane with Superb Flexibility for Molecular Filtration. ACS Applied Materials & Interfaces, 2017, 9, 18966-18976.	4.0	94
24	Integration of Janus Wettability and Heat Conduction in Hierarchically Designed Textiles for All-Day Personal Radiative Cooling. Nano Letters, 2022, 22, 680-687.	4.5	93
25	Thermoconductive, Moisture-Permeable, and Superhydrophobic Nanofibrous Membranes with Interpenetrated Boron Nitride Network for Personal Cooling Fabrics. ACS Applied Materials & Interfaces, 2020, 12, 32078-32089.	4.0	90
26	Amphiphobic fluorinated polyurethane composite microfibrous membranes with robust waterproof and breathable performances. RSC Advances, 2013, 3, 2248-2255.	1.7	87
27	Conductive and Elastic TiO ₂ Nanofibrous Aerogels: A New Concept toward Selfâ€6upported Electrocatalysts with Superior Activity and Durability. Angewandte Chemie - International Edition, 2020, 59, 23252-23260.	7.2	87
28	Breathâ€Figure Selfâ€Assembled Lowâ€Cost Janus Fabrics for Highly Efficient and Stable Solar Desalination. Advanced Functional Materials, 2022, 32, .	7.8	80
29	Smart, Elastic, and Nanofiber-Based 3D Scaffolds with Self-Deploying Capability for Osteoporotic Bone Regeneration. Nano Letters, 2019, 19, 9112-9120.	4.5	72
30	Ultralight, superelastic and bendable lashing-structured nanofibrous aerogels for effective sound absorption. Nanoscale, 2019, 11, 2289-2298.	2.8	70
31	Ultralight and Resilient Electrospun Fiber Sponge with a Lamellar Corrugated Microstructure for Effective Low-Frequency Sound Absorption. ACS Applied Materials & Interfaces, 2019, 11, 35333-35342.	4.0	66
32	Flexible ceramic nanofibrous sponges with hierarchically entangled graphene networks enable noise absorption. Nature Communications, 2021, 12, 6599.	5.8	64
33	Human Skin-Like, Robust Waterproof, and Highly Breathable Fibrous Membranes with Short Perfluorobutyl Chains for Eco-Friendly Protective Textiles. ACS Applied Materials & Interfaces, 2018, 10, 30887-30894.	4.0	63
34	All-Ceramic and Elastic Aerogels with Nanofibrous-Granular Binary Synergistic Structure for Thermal Superinsulation. ACS Nano, 2022, 16, 5487-5495.	7.3	59
35	Multilevel porous structured polyvinylidene fluoride/polyurethane fibrous membranes for ultrahigh waterproof and breathable application. Composites Communications, 2017, 6, 63-67.	3.3	56
36	Multi-functional flexible 2D carbon nanostructured networks. Nature Communications, 2020, 11, 5134.	5.8	55

Jianyong Yu

#	Article	IF	CITATIONS
37	Waterborne electrospinning of fluorine-free stretchable nanofiber membranes with waterproof and breathable capabilities for protective textiles. Journal of Colloid and Interface Science, 2021, 602, 105-114.	5.0	47
38	Tailoring Differential Moisture Transfer Performance of Nonwoven/Polyacrylonitrile‣iO ₂ Nanofiber Composite Membranes. Advanced Materials Interfaces, 2017, 4, 1700062.	1.9	46
39	Highly flexible, mesoporous structured, and metallic Cu-doped C/SiO ₂ nanofibrous membranes for efficient catalytic oxidative elimination of antibiotic pollutants. Nanoscale, 2019, 11, 14844-14856.	2.8	46
40	Textile waste derived cellulose based composite aerogel for efficient solar steam generation. Composites Communications, 2021, 28, 100936.	3.3	45
41	Fire-Resistant and Hierarchically Structured Elastic Ceramic Nanofibrous Aerogels for Efficient Low-Frequency Noise Reduction. Nano Letters, 2022, 22, 1609-1617.	4.5	42
42	Environmentally benign modification of breathable nanofibrous membranes exhibiting superior waterproof and photocatalytic self-cleaning properties. Nanoscale Horizons, 2019, 4, 867-873.	4.1	41
43	Assembly of silica aerogels within silica nanofibers: towards a super-insulating flexible hybrid aerogel membrane. RSC Advances, 2015, 5, 91813-91820.	1.7	38
44	Tailoring waterproof and breathable properties of environmentally friendly electrospun fibrous membranes by optimizing porous structure and surface wettability. Composites Communications, 2019, 15, 40-45.	3.3	38
45	Stretchable PDMS Embedded Fibrous Membranes Based on an Ethanol Solvent System for Waterproof and Breathable Applications. ACS Applied Bio Materials, 2019, 2, 5949-5956.	2.3	37
46	Nanofibrous hydrogels embedded with phase-change materials: Temperature-responsive dressings for accelerating skin wound healing. Composites Communications, 2021, 25, 100752.	3.3	37
47	Sandwich-Structured textiles with hierarchically nanofibrous network and Janus wettability for outdoor personal thermal and moisture management. Chemical Engineering Journal, 2022, 450, 138012.	6.6	37
48	Large-scale fabrication of highly aligned poly(m-phenylene isophthalamide) nanofibers with robust mechanical strength. RSC Advances, 2014, 4, 45760-45767.	1.7	36
49	N-Halamine Functionalized Electrospun Poly(Vinyl Alcohol-co-Ethylene) Nanofibrous Membranes with Rechargeable Antibacterial Activity for Bioprotective Applications. Advanced Fiber Materials, 2019, 1, 126-136.	7.9	36
50	One-step fabrication of multi-scaled, inter-connected hierarchical fibrous membranes for directional moisture transport. Journal of Colloid and Interface Science, 2020, 577, 207-216.	5.0	35
51	Highly Active and Selective Electroreduction of N ₂ by the Catalysis of Ga Single Atoms Stabilized on Amorphous TiO ₂ Nanofibers. ACS Nano, 2022, 16, 4186-4196.	7.3	33
52	Stretchable and Superelastic Fibrous Sponges Tailored by "Stiff–Soft―Bicomponent Electrospun Fibers for Warmth Retention. ACS Applied Materials & Interfaces, 2020, 12, 27562-27571.	4.0	31
53	Interlocked Dualâ€Network and Superelastic Electrospun Fibrous Sponges for Efficient Lowâ€Frequency Noise Absorption. Small Structures, 2020, 1, 2000004.	6.9	30
54	Nitric Oxide-Releasing Tryptophan-Based Poly(ester urea)s Electrospun Composite Nanofiber Mats with Antibacterial and Antibiofilm Activities for Infected Wound Healing. ACS Applied Materials & Interfaces, 2022, 14, 15911-15926.	4.0	29

JIANYONG YU

#	Article	IF	CITATIONS
55	Tailoring Broad-Band-Absorbed Thermoplasmonic 1D Nanochains for Smart Windows with Adaptive Solar Modulation. ACS Applied Materials & Interfaces, 2021, 13, 5634-5644.	4.0	27
56	A Trilayered Composite Fabric with Directional Water Transport and Resistance to Blood Penetration for Medical Protective Clothing. ACS Applied Materials & Interfaces, 2022, 14, 18944-18953.	4.0	26
57	Bioinspired sequentially crosslinked nanofibrous hydrogels with robust adhesive and stretchable capability for joint wound dressing. Composites Communications, 2021, 26, 100785.	3.3	25
58	Superstable and Intrinsically Selfâ€Healing Fibrous Membrane with Bionic Confined Protective Structure for Breathable Electronic Skin. Angewandte Chemie, 2022, 134, .	1.6	24
59	Ultralight and superelastic fibrous sponges with effective heat preservation and photo-thermal conversion for personal cold protection. Composites Communications, 2021, 25, 100766.	3.3	21
60	Ultrathin Zirconium Hydroxide Nanosheetâ€Assembled Nanofibrous Membranes for Rapid Degradation of Chemical Warfare Agents. Small, 2021, 17, e2101639.	5.2	20
61	Ultralight and Mechanically Robust Fibrous Sponges Tailored by Semi-Interpenetrating Polymer Networks for Warmth Retention. ACS Applied Materials & Interfaces, 2021, 13, 18165-18174.	4.0	19
62	Superelastic, lightweight, and flame-retardant 3D fibrous sponge fabricated by one-step electrospinning for heat retention. Composites Communications, 2021, 25, 100681.	3.3	18
63	Lizard-Skin-Inspired Nanofibrous Capillary Network Combined with a Slippery Surface for Efficient Fog Collection. ACS Applied Materials & Interfaces, 2021, 13, 36587-36594.	4.0	18
64	Highly Adhesive, Stretchable and Breathable Gelatin Methacryloyl-based Nanofibrous Hydrogels for Wound Dressings. ACS Applied Bio Materials, 2022, 5, 1047-1056.	2.3	16
65	Biomimetic Aligned Micro-/Nanofibrous Composite Membranes with Ultrafast Water Transport and Evaporation for Efficient Indoor Humidification. ACS Applied Materials & Interfaces, 2022, 14, 1983-1993.	4.0	16
66	Superelastic and Photothermal RGO/Zr-Doped TiO ₂ Nanofibrous Aerogels Enable the Rapid Decomposition of Chemical Warfare Agents. Nano Letters, 2022, 22, 4368-4375.	4.5	15
67	Ultralight, Superelastic, and Washable Nanofibrous Sponges with Rigid-Flexible Coupling Architecture Enable Reusable Warmth Retention. Nano Letters, 2022, 22, 830-837.	4.5	12
68	Transformation of Fibrous Membranes from Opaque to Transparent under Mechanical Pressing. Engineering, 2022, 19, 84-92.	3.2	11
69	Super-Elastic Fluorinated Polyurethane Nanofibrous Membranes with Simultaneously Waterproof and Breathable Performance. ACS Applied Polymer Materials, 2022, 4, 5557-5565.	2.0	11
70	Nanoflake-Engineered Zirconic Fibrous Aerogels with Parallel-Arrayed Conduits for Fast Nerve Agent Degradation. Nano Letters, 2021, 21, 8839-8847.	4.5	10
71	Superelastic, Breathable, and High-Barrier Nanofibrous Membranes with Biomimetic ECM Structure for Toxic Chemical Protection. ACS Applied Materials & amp; Interfaces, 2022, 14, 8499-8507.	4.0	6
72	A Strategy to Achieve the Inherently Flame-retardant PA56 by Copolymerization with DDP. Journal of Polymers and the Environment, 2022, 30, 3802-3814.	2.4	6

#	Article	IF	CITATIONS
73	Particle morphology, structure and properties of nascent ultra-high molecular weight polyethylene. Royal Society Open Science, 2020, 7, 200663.	1.1	3
74	Freestanding Metal Organic Frameworkâ€Based Multifunctional Membranes Fabricated via Pseudomorphic Replication toward Liquid―and Gasâ€Hazards Abatement. Advanced Materials Interfaces, 2021, 8, 2101178.	1.9	3

6