Masashi Yamada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10048361/publications.pdf Version: 2024-02-01

ΜΑςΑςΗΙ ΥΛΜΑΠΑ

#	Article	IF	CITATIONS
1	The Roles of Peptide Hormones and Their Receptors during Plant Root Development. Genes, 2021, 12, 22.	2.4	18
2	RGF1 controls root meristem size through ROS signalling. Nature, 2020, 577, 85-88.	27.8	128
3	Functions of long intergenic non-coding (linc) RNAs in plants. Journal of Plant Research, 2017, 130, 67-73.	2.4	41
4	Polyamine Resistance Is Increased by Mutations in a Nitrate Transporter Gene NRT1.3 (AtNPF6.4) in Arabidopsis thaliana. Frontiers in Plant Science, 2016, 7, 834.	3.6	26
5	High-Resolution Expression Map of the Arabidopsis Root Reveals Alternative Splicing and lincRNA Regulation. Developmental Cell, 2016, 39, 508-522.	7.0	245
6	BAM 1 and RECEPTOR ―LIKE PROTEIN KINASE 2 constitute a signaling pathway and modulate CLE peptideâ€ŧriggered growth inhibition in A rabidopsis root. New Phytologist, 2015, 208, 1104-1113.	7.3	64
7	A plant U-box protein, PUB4, regulates asymmetric cell division and cell proliferation in the root meristem. Development (Cambridge), 2015, 142, 444-453.	2.5	61
8	BEACH-Domain Proteins Act Together in a Cascade to Mediate Vacuolar Protein Trafficking and Disease Resistance in Arabidopsis. Molecular Plant, 2015, 8, 389-398.	8.3	27
9	Heterotrimeric G proteins control stem cell proliferation through <scp>CLAVATA</scp> signaling in <i>Arabidopsis</i> . EMBO Reports, 2014, 15, 1202-1209.	4.5	92
10	The roles of peptide hormones during plant root development. Current Opinion in Plant Biology, 2013, 16, 56-61.	7.1	40
11	Identification of an EMS-induced causal mutation in a gene required for boron-mediated root development by low-coverage genome re-sequencing inArabidopsis. Plant Signaling and Behavior, 2013, 8, e22534.	2.4	32
12	The Function of the CLE Peptides in Plant Development and Plant-Microbe Interactions. The Arabidopsis Book, 2011, 9, e0149.	0.5	69
13	The <i>TRANSPORT INHIBITOR RESPONSE2</i> Gene Is Required for Auxin Synthesis and Diverse Aspects of Plant Development. Plant Physiology, 2009, 151, 168-179.	4.8	185
14	Sites and Regulation of Auxin Biosynthesis in Arabidopsis Roots. Plant Cell, 2005, 17, 1090-1104.	6.6	466
15	Plant Development Is Regulated by a Family of Auxin Receptor F Box Proteins. Developmental Cell, 2005, 9, 109-119.	7.0	865
16	Quantification of Protein A-Gold Staining for Peroxisomal Enzymes by Confocal Laser Scanning Microscopy. Journal of Histochemistry and Cytochemistry, 1999, 47, 1343-1349.	2.5	8
17	Maternal Pumilio acts together with Nanos in germline development in Drosophila embryos. Nature Cell Biology, 1999, 1, 431-437.	10.3	459
18	Essential role of the posterior morphogen nanos for germline development in Drosophila. Nature, 1996, 380, 708-711.	27.8	287